
Report Documentation Page Page 1 of 2

i Iorm Approved

REPORT DOCUMENTATION PAGE FOMB3 No. 0704-0188

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, sean
existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regardii
burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Servi
Directorate for information Operations and Reports, 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and the Office of Managem
Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503.
1- AGENCY USE ONLY 2 REPORT DATE 3. REPORT TYPE AND DATES COVERED

(112/9/2005 (MM/DD/YY) Final Report, April 11, 2005 to
.... (M/DY)December 11, 2005

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Agent Based Computing Machine FA8750-05-C-
10127 CLIN 0005

6. AUTHOR(S)

Edwin R. Addison

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZAI

Lexxle, Inc. REPORT, NUMBER

1121 Pembroke Jones Dr., Suite 200 0005-2
Wilmingotn NC 28405

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONiTORI
AFRL •. AGENCY REPORT NUMBER

.

11 SUPPLEMENTARY NOTES

NONE

12a. DISTRIBUTION/AVAILABILITY STATEMENT DISTRIBUTION CODE

,' Approved for public release; distribution unlimited.

..... ,,, att:utit;ied to U.b. •overnmentý,iciLes o ,,ntlny pf4oprietay-

13. ABSTRACT (Maximum 200 words)
This SBIR developed a new class of computer architecture called an "agent based
computing" module (ABC Machine) that enables "cognitive computing" algorithms to
be implemented effectively on a large scale. The ABC Machine is a biologically
inspired architecture derived from the field of "membrane computing" and is also
based upon "statistical dataflow computing". It operates in local contexts over
string operators. The ABC Machine is motivated by analyzing the biochemical
processing in cells. The architecture is suited for computing problems not easily
solved by traditionalmachines. It has the properties of very high parallelism,
distributed and redundant processing, and graceful degradation. Phase 1
demonstrated advantages over traditional AI algorithms on conventional machines
in the following ways: 1) pattern recognition problems with very large numbers of -

14.SUBJECT TERMS 15. NUMBER OF PAGES
SBIR Report, cogntive computing, biologically inspired 3j 49
computing, artificial intelligence, agent based computing, 16 PRICE.CODE
pattern recognition, complex systems .

17. SECURITY CLASSIFICATION OF 118. SECURITY CLASSIFICATION OF 19. SECURITY CLASSIFICATION OF 20. LIMITATION OF ABSTRA
REPORT THIS PAGE ABSTRACT

https://www.dodsbir.net/submission/ReportPage/ReportPage.asp?rptno=820&Mode=Edit 12/9/2005

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 1

Agent Based Computing Machine
AFRL SBIR Phase 1 Final Report

Lexxle, Inc.
FA8750-05-C-0127

Table of Contents

1. Identification and Significance of the Problem or Opportunity 2
1.1 Conceptual Overview 2
1.2 Biological Motivation 5
1.3 Sample Algorithms 7
1.4 Significance to Cognitive Computing and Benefits 12
1.5 Detailed Computational Example #1: Best First Search 14
1.6 Detailed Computational Example #2: Pattern Recognition 20
1.7 ABC Machine Formal Definition 24
1.8 Computational Analysis 31
1.9 Programming Concepts 34
1.10 Cluster Mapping 38
1.11 Phase 1 Results 43

2. Related Work 46
4.1 Phase Prior Research 46
4.2 Relevant Experience of Lexxle Staff 46
4.3 REFERENCES 48

20051213 223

"Agent Based Computing Machine" by Lexxle, Inc. I

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 2

1. Identification and Significance of the Problem or Opportunity.

This section introduces the concept, sample algorithms, architecture and proposed implementation of a
biologically inspired computing system called an "agent based computing" machine (ABC Machine). The
ABC Machine is motivated by cellular biochemistry and it is based upon a concept called "statistical
dataflow computing" and it operates in local contexts over string operators. It is modeled in part by
analyzing the biochemical processing in biological cells, but with a goal to provide an architecture for
computing problems not easily solved by traditional machines such as pattern recognition, predictive
modeling and logical reasoning. The ABC Machine is related to a recent biologically inspired computing
concept called a "membrane computer" (Calude and Paun, 2001). However, it has been extended to
enable string processing and large scale redundancy to more easily accommodate cognitive computing
algorithms. While the membrane computer is an abstract computing concept that has never been built,
the ABC Machine is a special case of a modified membrane computer with a practical architecture. It has
been shown in Phase 1 to be effective on cognitive computing and/or artificial intelligence algorithms.

The ABC Machine can be characterized as a statistical dataflow machine that computes over string
operators using massively parallel redundant rules in contained localized computing regions (called
"membranes"). Computation is mediated by specific object classes that regulate how much and which
instructions can execute (these object classes serve roles similar to energy molecules and enzymes in
cells), thus enabling context sensitive computing. The architecture of the ABC Machine is explained in
greater detail below. The ABC Machine "computes" by statistical approximation using redundant rules in
virtual computing regions (membranes). The ABC Machine processing is context dependent, allows I/O
operations across these regions or "membranes" and can be programmed manually or by genetic
programming. The regions act as "agents" and memory is distributed throughout and across regions. It
offers the promise of a machine that can solve complex pattern recognition problems, complex simulation
problems and logic problems such as expert systems or production systems. Cognitive computing
problems may be modeled by ABC Machine computation using a series of statistically redundant strong
objects and context sensitive operators.

A fundamental difference between an ABC Machine and a conventional von Neumann computer is that in
the ABC Machine, computation is fuzzy and redundant. The results of any computation are based upon
the "state" of the machine and are often determined by a voting or majority rules concept for the
redundant fuzzy computations. This is what is meant by "statistical" computing. A second fundamental
difference is that it is a dataflow machine, meaning that instructions only execute when their operands
"arrive" for computing as opposed to the traditional fetch cycle in a control flow architecture.

The remainder of this section describes the ABC Machine by first giving a conceptual overview to
illustrate the processing concepts. This is followed by the presentation of several sample algorithms and
algorithm classes and how they work. The special area of cognitive computing is addressed. The
architecture is then formally defined, followed by a brief computational analysis. Several options for
hardware implementation are explored including an emulation with a high performance cluster, a high
performance silicon chip and the potential for biochemical implementations.

1.1 Conceptual Overview of the ABC Machine

The ABC Machine is a work in progress on US Department of Defense Small Business Innovation
research funding. While its physical implementation could take various forms ranging from a single CPU
emulation to a custom board to a biochemical solution, this proposal focuses on a high performance
cluster (HPC) implementation. The ABC Machine is a distributed, parallel architecture that operates over
large redundant rule and data sets. It is a "statistical dataflow machine" that operates in a
nondeterministic manner. It is a derivative of the concept of membrane computers or "P Systems" and is
inspired by biological principles. It augments a classical P System in that it operates over string
operators, has higher level system functions, has a distributed content addressable memory (CAM),
various predefined string and communication operators, and the potential to implement local regions with

"Agent Based Computing Machine" by Lexxle, Inc. 2

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 3

specific system functionality. It can also be thought of as a super generalization of a neural network. The
nature of the ABC Machine renders it highly useful for cognitive computin§ tasks. This concept is
explored in further detail in the remainder of this section and those that follow.

To illustrate the concept of how ABC Machine computation works, consider the specific example of an
ABC Machine computing node illustrated in Figure 1 below. An ABC Machine consists of many such
nodes (implemented in software or hardware). The node contains tokens (such as represented by
symbols A, B and C) and "strings" of tokens (such as CCCA and CCB) and rules (RULE1 and RULE2).
This diagram represents an "ABC Machine" at an instant in time. The regions are nested and each is a
particular computing zone isolated from the other regions. In this case, Region 3 is empty. The
alphabetic symbols (A, B, AB, CCB, etc.) are "strings" of atomic elements. The ABC Machine computes
over strings and modifies them using the rules. There may be many copies of any given string and/or
rule. Rules execute when operand strings become available.

It also contains a nested node or "membrane" (Region 2) that has tokens and an I/O Rule (RULE3) that
allows the exchange of A tokens for B tokens or visa versa with the Region 1 membrane. In Region 1,
RULE1 concatenates two tokens or strings and RULE2 removes the middle out of a string that is at least
three elements long. The rules execute when the object "E" (called an 'enzyme' for its analogy to biology)
is present and when the respective operands are within the region of the rule. Depending on the physical
implementation of the computer, random selection can be used among all those rules that qualify per the
previous statement. So a plausible sequence of events is eventually Region 2 exchanges the entire A
elements for B elements in Region 1 and then RULE1 eventually builds up a string AAAAA. This event
might be deemed improbable if all objects move randomly and therefore many other possibilities exist.

Figure 1. Illustration of an ABC Machine Computing Node

A A B C AB CCCA REGION 1

B
C RULE1: E, X, Y --> E, XY

E E E E

RULE2: E, XYZ E- B, XZ, Y

B B C A B A A C

RULE3: (+A & -B) OR (+B & -A)
C CCB

REGION 2

The illustration above shows only single copies of instructions or rules. The ABC Machine, however, is
defined to be a statistical machine, meaning that there are many copies of each instruction and operand,
in fact very large numbers of each. They operate redundantly and in parallel. Computational results are
based on the quantity of a particular object being produced. So unlike traditional computing, an ABC
Machine is intended to be parallel and redundant with very large numbers of copies of all objects and
instructions. The execution of which occurs first or when is random. So unlike a von Neumann machine

"Agent Based Computing Machine" by Lexxle, Inc. 3

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 4

where a poorly executed instruction is a catastrophic error, here it simply becomes one bad computation
that will be buried by many good ones - hence providing a graceful degradation. This concept is
motivated form the principles if biology where everything occurs in large numbers and results are based
upon the concentration of a particular biochemical rather than a single molecule.

At any instant in time, the "state" of the ABC Machine is the set of strings that exist in each region. The
ABC Machine "computes" by applying rules in a region to the strings in a region in an asynchronous,
maximally parallel manner. A problem begins with an "initial state", that is the set of regions, the set and
arrangement of strings in the regions, and the operators or rules that exist in each region. Over time, the
state evolves due to the execution of the rules, including the movement of strings across region
boundaries when rules call for this. The solution to a problem is represented by the final state after
computation is finished, or in some cases, the state "trajectory", that is, the evolutionary path of state.
Usually, the solution to a problem will be contained in a small portion of that final state.

The ABC Machine is actually a special case of an abstract machine class reported in the literature called
a membrane computer (Calude and Paun, 2001).). A membrane computer can be represented by a
Venn diagram with no intersecting regions similar to Figure 1. Each region is an area for computation. It
is motivated by the biochemical functioning of biological cells. Outputs of computation in one region
make inputs to other regions. Calude and Paun have addressed membrane machines in theoretical
depth. They describe a system where "objects" inside membrane regions "evolve" through a series of
computational steps and rules. The theory of membrane computing is reasonably well developed,
although no membrane computers have been built.

The ABC Machine is, in part, motivated by the theory of membrane computing, but it is also driven by the
need to solve practical problems. Because both the membrane computer and the ABC Machine operate
on symbols rather than numbers, it potentially makes an ideal candidate for cognitive computing. That is
the main thesis of this proposal and the main goal of the Phase 1 effort is to prove and demonstrate that.

The ABC Machine is a membrane computer, but it exhibits more general computing features than those
reported in the membrane computing literature. The following specific features are examples of
computing functions that appear in Figure 1, but are not reported on in the membrane computing
literature in any depth:
"* Use of strings as objects instead of atomic objects
"* Use of multiple copies of operands and multiple copies of instructions operating redundantly
"* Using the notion of distance or proximal location as a prerequisite for rule execution
"* Implementation of 1/O rules
"* Illustration of rules which require enzymes (the object E) to be present in order to execute.

The illustration above showed a "ligation" rule (RULE1) that merges two objects together to make a
longer string (i.e. X and Y become XY), a "digestion" rule (RULE2) that takes a string and breaks it down
into two smaller objects, and an I/O rule (RULE3) that exchanges objects between two regions. Digestion
rules are useful in computational work involved in sorting, matching or logical comparisons. Ligation is
the opposite of digestion and it is the process of concatenating two strings. Once digestion and ligation
are defined, logic operations can be performed. For example, a NAND gate is a function that means "not
AND". In traditional computers, it returns a value of 0 when all of its inputs are 1, and otherwise it returns
a 1. Things are not so simple in the ABC Machine world, as there is no absolute 1 or 0 answer to a
question, but rather a statistical concentration indicating an expression level. Tokens and strings are not
variables, they are absolute symbols and cannot take on a 0 or 1 value. They are absent or present.

An AND gate is a simple ligation instruction of two or more inputs in a specified order. The output is-the
ligated string and the answer to the AND function is the concentration level or expression level of the
output product. This, in shorthand notation, A AND B can be implemented by the following ligation: (A,
B) -- AB. In other words the string A is appended to the string B to make AB.

The "expression level" of AB, or <AB> is the result. The expression level means "the quantity of", so
<AB> represents a number corresponding to how many copies of object AB are present. A high value of

"Agent Based Computing Machine" by Lexxle, Inc. 4

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 5

<AB> means A AND B is true. A NAND gate requires no further implementation, as a low value of <AB>
indicates A NAND B is true.

Statistical computing output is always in expression level rather than absolute values. The very meaning
of a logic gate operator is changes. In a von Neumann architecture, the gates AND and NAND have
absolute meaning. In an ABC Machine architecture, they have only expression levels. The tokens and/or
strings with high expression levels represent the state or answer to a problem. This is not unlike gene
expression or biochemical reactions in cells. There is only an expression state and never an absolute
state. This will be significant later when programs and algorithms are discussed.

So, an OR gate can be computed from a ligation instruction also, but other operands must be involved.
For example if it is desired to compute the value of A OR B, this can be done by ligating A and B
separately with other commonly available operands and then digesting the A or the B off the resulting
string. This would proceed as follows. The ligation operations (in shorthand notation) are:

(A, X, Y) -- AXY
(B, X, Y) -- BXY

Here it is assumed that X and Y are highly expressed in the region of computation. This ligation
instruction is followed by a digestion instruction, as follows:

AXY - (A, XY)
BXY -4 (B, XY)

The value of A OR B can be ascertained by measuring the expression level of XY as <XY>. If <XY> is
high, then A OR B is considered to be true. Once again, recall that A and B (and X and Y) are tokens or
strings and not algebraic variables. There are no algebraic variables in instructions. The data and
programs are inseparable as in LISP programming in the conventional computing world. Logic gates in
an ABC Machine must be interpreted statistically. The execution of any one copy of the logic gate
instruction is insignificant. What is significant is the concentration of operands and products indicating in
a large sense the relative quantity of execution of the logic gate instruction. Thus, the "answer" is not
black or white, but gray, but perhaps the gray points toward a black or white answer.

1.2 Biological Motivation

DARPA's current BICA program (Biologically Inspired Computer Architectures) (BICA), is evidence of
current interest in the notion of using biology as a metaphor for novel computer architectures. Before
identifying the architecture and components of the ABC Machine, it is illustrative to identify the
computational components of a biological cell and make a functional analogy to traditional computing
architecture. Several authors have addressed this idea, but a full description is not yet realized. Cray
(1996, May 30) made a correspondence between various operating system components and the
functioning parts of a cell.

A cell may be viewed as a computing element or processor with the following characteristics. It is an
interrupt driven dataflow machine that processes many instructions in parallel and uses many
subordinated processors. Ultimately, the cells role is to send and receive various communications
(electrical, chemical) with other cells at various points in time. The purpose of its internal "computation" is
to stay alive, recycle "operands", express selected genes (i.e. run programs), and produce output. The
output produced by the cell can be viewed as information, although it often takes a physical form
(molecules). The cell phenotype is a physical response to gene expression (i.e., programs that have run).
It can be viewed as a "state vector".

Unlike a traditional computer that purely produces abstract information, the cell often produces physical
information and it changes in structure and state as it does so. Therefore, a cell can be viewed as more
than an information processing engine - it is also a molecular machine. Therefore, a cell may be viewed
as a computer of sorts (Cray ,1998), (Paton, 1994). The following table makes a partial comparison of

"Agent Based Computing Machine" by Lexxle, Inc. 5

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 6

the components of a computer with the functioning elements of a cell that extends the ideas of Cray
(1998) and Paton (1994). Key features of a computer are matched with a related feature of a cell that
accomplishes functionally similar things.

The computer program of a cell is its DNA. The DNA maintains copies of nucleotide sequences that
encode for proteins, which perform functions in cells. A given gene (a subset of the DNA) is transcribed
into mRNA when appropriate transcription factors (specialized proteins) are present. Hence, mRNA acts
as a cache memory or copy of a specific instruction in a temporary location. When a gene is transcribed,
it is said to be expressed, and its expression level is the number of copies of mRNA currently present in
the cell and thus can be thought of as the "state" of cell with respect to a specific gene at a given point in
time. The cell has an operating "kernel" which translates mRNA into proteins. There are some notable
differences between the functioning of a cell and that of a von Neumann machine. A few of the most
important differences are listed below:

1) A cell is a dataflow machine. Instructions (i.e. chemical reactions) execute when their operands
(i.e. reactants and enzymes) arrive on the scene. There is no sequential program of instructions
as in the von Neumann machine.

2) Instructions operate in a statistical manner, by having a large number of redundant copies of each
instruction and operand. Therefore, the chemical reactions in a cell are significant only when they
occur in large concentrations exceeding a significance threshold. The behavior of such
concentrations of proteins is driven by the law of large numbers. The well known chemical
processes of diffusion, active transport, enzyme driven chemical reactions, and metabolism drive
the production, location and concentration of cellular reactants (Becker, 2000). Unlike the von
Neumann machine, a single instruction execution by itself is not significant unless it occurs a
significant number of times producing a concentration of products (operands for instructions).

3) A series of instructions or reactions in a cell forms a pathway or circuit representing a sequence
of instructions as in a subroutine or function call in a von Neumann machine. What is different,
however, is that such pathways execute in large numbers and in parallel with many other active
pathways at the same time. Thus, the cell is not only a statistical machine, but it operates as a
parallel, distributed machine.

4) The cell may be thought of as a processor or CPU. In a von Neumann machine, there is one
(and sometimes a few) CPUs. In a cellular environment, there must be many cells in order for
useful processing to occur. For example, a tissue or organ consists of a very large number of
cells acting cooperatively. Hence, the ultimate deployment of a cell is in a large "swarm" of other
cells in a network, rather than a single CPU integrated with peripherals and a control system.
Cellular behavior in large numbers or in a network is driven by competition for energy and survival
(Bar-Yam, 1993)

5) In a cell instructions are hardware elements (proteins) or actions of hardware elements (chemical
reactions). The reactants and products can be digested, synthesized, ingested, or exported.
They are tokens or objects. Hence, the operating environment of a cell is highly object oriented.

The computer architecture most similar to cells is "Membrane Computing" (Paun, 2001). A membrane
computer looks to the whole cell structure and functioning as a computing device. The membranes within
a cell play a fundamental role as filters and separators. A Venn diagram with no intersecting regions can
represent a membrane computer. Each region is an area for computation. Outputs of computation in one
region make inputs to other regions. Calude and Paun have addressed membrane machines in
theoretical depth. He describes a system where "objects" inside membrane regions "evolve" through a
series of computational steps and rules. A computational system, called a "P System" will halt when no
object can further evolve. Calude and Paun (2001) explore several variants of P Systems from a
theoretical perspective by investigating properties such as decidability conditions and normal forms.

"Agent Based Computing Machine" by Lexxle, Inc. 6

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 7

A P System (membrane computer) is a distributed and highly parallel model based on the notion of a
membrane structure. The structure consists of cell-like membranes recurrently placed inside a "skin
membrane" (Calude and Paun, 2001). As stated above, it can be represented as a Venn diagram with
nonintersecting regions. Each region may contain objects that can evolve through processing of rules, or
that can pass through membranes based on certain conditions. Membranes can be dissolved or
eliminated based on certain contexts. In a P System, computation progresses until the system halts, that
is no further evolution of the objects is possible. At that time, the computation is complete.

Sets of objects, known as "multisets", are placed inside the regions depicted by the membranes. The
objects are represented as symbols over an alphabet. Sets of rules in each region allow the objects to
evolve to produce new objects from the existing ones. Objects can move from one region to another
across a membrane if a rule exists to allow that. The ABC Machine is a derivative of a Membrane
Computer, with string processing to more easily enable cognitive computing applications. The description
follows in the sections below.

1.3 Sample Algorithms

Before defining the ABC Machine architecture, several algorithms and algorithm classes are discussed
for illustration and analysis purposes. These examples serve to illustrate processing concepts with the
ABC Machine, and to define the instruction set and operating system support needed to accomplish
them. The examples were chosen that best fit the kinds of computing deemed to be the strength of the
ABC Machine such as string manipulation, sorting, pattern matching, production systems and algorithms
related to "cognitive computing".

Binary String Matching

Consider a linear binary string of Os and 1s such as 000111001100. This can be thought of as a
representation for a one dimensional signal or pattern. Let us look at both non-redundant pattern
matching and redundant pattern recognition. The latter is useful when the signal is in the presence of
noise. To match a specific pattern exactly, let us consider a shorter string, say 101. One approach is to
have regions that are nested like a tree, as follows in Figure 2 below.

Each region contains a strip and move operation. The rule is to remove the rightmost atomic element,
discard it, and move it to the next lower region depending upon whether the stripped atom was a 1 or a 0.
If a single copy of the original string enters the ABC Machine, it will eventually "arrive" at a region that
identifies it. This is the terminal state and therefore the solution to the pattern matching problem. Now
consider the previous problem when there is noise in the pattern. Suppose we are trying to distinguish
between X=000111001100 and Y=I 11111001111. If the "signal" is noisy, we might be offered the pattern
Z=101111001111 and then attempt to determine which pattern it best matches. The algorithm above will
not work because it is based on exact matching. Instead we need a set of rules that is tolerant of fuzzy
matching. This is a problem where the statistical aspects of an ABC Machine may be applied.

One approach is to use a similar approach to the one above, but where the outermost layer has a rule
that does an arbitrary flip of a 0 to 1 or visa versa for each position. Then begin by entering 100 copies of
the string Z to be recognized. Allow these copies to "roam" around in the outermost layer (this is
effectively accomplished in different manners depending upon the physical implementation). Eventually,
each copy may run into an arbitrary flipping action. An equal number of rules in the outermost layer is a
move operation that pushes the string to the next layer below. From there and below, the algorithm is the
same as the exact pattern matching. In the end, the region that gets the most (a final counting algorithm
is needed somewhat like discussed above) represents the answer to the recognition problem.

"Agent Based Computing Machine" by Lexxle, Inc. 7

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 8

Region-1

Region- 10 Region-l I

Region- 100 Region- 110

Region-101 Region- 111

Figure 2. Nested Regions.

Sorting

There are many methods of sorting. One simple method that takes advantage of the statistical nature of
the ABC machine is to begin with an initial state consisting of a large number of copies of each string to
be sorted, say 1000. These copies are distributed randomly throughout a region of an ABC Machine. A
large number of copies of the first compare rule above are also distributed throughout the ABC Machine
in its initial state. However, the rule is modified so as to disallow any string from being operated on more
than once. For example: sl, s2, t, u --> tsl, us2 if IslI < 1s21, else us1, ts2

This rule may not operate on any string beginning in t or u. Then apply a counting rule to the strings ts1
where s1 is the i-th string to be sorted. The highest count is the shortest or lowest number in the sorted
string. This has the disadvantage that it requires arithmetic. A better approach would be to use nested
regions and to move the shorter sequence to a lower level and have the ABC Machine nested n levels
deep where there are n sequences to be sorted. The resulting final state is the strings. For sorting, we
assume that comparison methods already exist (i.e. comparator instructions).

We examine two additional approaches to sorting and use them to illustrate important features of the ABC
Machine, including the nature of convergence of statistical computing algorithms.

Sorting Method 1: Nested Regions Sort

The ABC machine/statistical dataflow process depends on multiple copies of data and on the moving of
data based on operations on it.

Normally, parallel approaches to sorting are limited by the fact that an element in a list (or set) can only
be in use at a single point in time. At most, then, when there are N elements to be sorted at most N/2
comparisons can be made simultaneously. In the ABC machine, X copies of each data element are
made and similar elements in the list are propelled to the 'correct' placement 'in order' aggregately at a
much faster rate.

"Agent Based Computing Machine" by Lexxle, Inc. 8

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 9

The premise is this: all of the elements are
contained in a single region and each element is E-_.a

duplicated X number of times to take advantage of
(X • N)/2 simultaneous comparing operators. As ,
two elements in the same region come in proximity
they are compared. The smaller 'atom' is pushed
into an interior region while the larger remains in , -,
the region. If the atoms are equal nothing happens. "
If there is no interior region one is created. Interior ? 2

regions are singly nested. If an operation removes 2 1" 2 /
the last atom from a region, the local nested
region's boundary is dissolved.

2 ' _A I
3 2 1 j

>>

Figure 3. All concurrent operations not shown.

The advantage of the combination of numerous duplications and massive parallelism is that the 'correct'
order of the elements is achieved very quickly and can take advantage of more simultaneous
comparisons then there are elements in the set. The disadvantage is that resultant ordering only shows
symbolic ordering. Most meaningful descriptions of the set are lost.

Sorting Method 2: "Fuzzy" Stochastic Cellular Progressive-State Method

Because of the massive concurrency of the state machine, 'fuzzy' sorting time can get better as N grows
very large. This method maintains the integrity of a set of elements at the expense of the number of
simultaneous comparisons. At most, only N/2 elements can be compared and re-ordered at any moment.
However, the current state of the machine at any point in time is progressively better than the last. There
is no guarantee that the list will ever reach 100% 'correctness', however, a close, but fuzzy solution is
acceptable for the ABC Machine because of its objective to solve 'cognitive computing' problems.

Fuzzy sorting applies comparisons with contextual values and requires a more complicated string
operations instructions set.

To sort, we need:
"* The list of elements to be sorted
"* At least N/2 'sorting units'

The Fuzzy Sort Method may be represented as:

While list is still being sorted:
1. Each sorting unit randomly attaches to two places on the list not already attached
to a sorting unit.
2. The elements are switched if they are in the wrong order.

"Agent Based Computing Machine" by Lexxle, Inc. 9

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 10

Deterministic Hybrid 'Bubble' Method Addendum:

In the bubble method, a comparison unit consists of a 'head' and a 'tail'. N/2 comparison units are
organized in a chain of length X. The head of the chain starts at the 'front' of the element list to be sorted.
As each comparison unit engulfs an element of the list it compares the value at its head with its tail and
switches the values if they are not in order. The comparison chain then proceeds to engulf another
element making its way towards the end of the element list.

Each time the kth bubble comparison unit reaches the end of the list, the ktP-I element in the list is then in
the correct position. The sorting pool consists of both random-attaching switching units and 'sorting
chains.' The sorting chains from the deterministic method are not connected and only randomly find the
'front' of the list and make its way towards the 'end' of the list. The graphs in Figures 4 and 5 below
consider 1,000 units and illustrate the 'convergence' of a statistical algorithm using an ABC Computing
architecture. The benefit of the hybrid method is that elements can moves move quickly towards their
correct position by being randomly compared (coarse ordering) and then nudged into their exact correct
position by the sorting chain unit and guarantees a 'correct' order in much less than serial NA2 time.

Figure 4. Sort Comparisons.

Cnmparisons

Sort 'correctness' is based on N-element lists with N different elements. The 'in-order' arrangement of the
list has each index equal to its value. Percent correct is calculated as:

[2, x~k]-
n2

Comparisons "Sorted"ness
n -50%
10n -78%
100n -92%
1000n -98%
10,000n -99.8%

While not as efficient as a traditional sorting method, a large number of simultaneous comparisons could
sort extremely large datasets 'very well' very fast. There is no copying of the element list required.

"Agent Based Computing Machine" by Lexxle, Inc. 10

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 11

Figure 5. Graphical Sort vs. Number of Comparisons.

flored 0 Comparisons n Comparisons 10n Cormparisns 100n Comparisons n,' o mparisos

idelal) 0.0% (re,,amd) 50.0%% 79.V% 2% 97,6%

Qraphlsoa repre•entation of ,000 element As order. Omen linas represent smraller vlues, red represent larger values.

Linear Equations

Can linear equations be solved using an ABC Machine? There have been numerous "dataflow" solutions
to the solution of a system of linear equations in N unknowns in the field of signal processing as well as in
the area of systolic arrays. Figure 6 below shows the structure of a linear equation systolic array. While
these solutions are elegant in nature, they fundamentally differ form the ABC Machine architecture is two
ways. First, the dataflow follows a highly organized path from one processing element to the next rather
than a random path. Second, the processing elements require multiplication, addition and sometimes
division. These arithmetic operations require an instruction set that goes beyond the scope of what is
suitable in an ABC Machine which is primarily a string processing, redundant, statistical computing
device. For these reasons, linear equations do not appear to be a good class of problems for an ABC
Machine. However, linear equations are not generally at the core of cognitive computing tasks, and
hence this is not a major setback.

Figure 6. Systolic Array.

"A A A

"Agent Based Computing Machine" by Lexxle, Inc. 1

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 12

1.4 Significance to Cognitive Computing and Benefits

DARPA defines cognitive computing as computing that can "reason, use represented knowledge, learn
from experience, accumulate knowledge, explain itself, accept direction, be aware of its own behavior and
capabilities as well as respond in a robust manner to surprises". Computer programs such as production
systems, pattern recognition algorithms, and learning algorithms falls into this realm. The results of the
Phase 1 study and the forgoing discussion showed that the ABC Machine as implemented on a HPC can
perform computation in these areas of computing both faster and of higher quality than traditional von
Neumann implementations of traditional Al programs. Some of the specific benefits of the ABC Machine
architecture implemented on a HPC are itemized below:

"* The ABC Machine can perform pattern recognition tasks well. It shows the promise of performing
superior to traditional connectionist architectures for certain classes of problems that can take
advantage of computational redundancy, more powerful instructions at each compute "node", and
the computational power of a large scale high performance computer. We have shown the ABC
architecture to be effective on dirty data, very large numbers of classes in classification problems,
and it requires no training (i.e., it learns via adaptive unsupervised learning to an unknown
number of classes).

"• The ABC Machine is capable of performing symbolic computing tasks due to its string processing
architecture. We have shown the ABC architecture to be effective on very deep search spaces
and with heuristics for making "best first" decisions. The redundancy and parallelism enables
such computing tasks to progress quickly. The redundancy enables symbolic computing tasks to
proceed without the brittleness at the boundaries of traditional Al symbolic computing tasks.

"* The highly parallel nature of the HPC implementation of the ABC architecture enables large scale
cognitive computing tasks to be implemented, such as face recognition over a very large
population, or such as automatic web service choreography - a complex planning task of a huge
number of data items.

"* Programming the ABC Machine is a simple as specifying regions, rule sets and atomic objects.
The rest of the problem is a matter of parallel redundant processing. Hence, it does not suffer
from software engineering complexities the way traditional computing does. In addition. machine
learning tasks can be performed using the genetic programming approach to programming the
ABC Machine.

"* Overall, the ABC Machine implemented on a HPC provides an alternative for cognitive computing
tasks that offers either substantial computing power, or better algorithm performance due to its
statistical computing nature, or both. Problems that are difficult on conventional machines, such
as pattern recognition, deep search space production systems, or complex system simulation,
may be well suited to the ABC Machine.

We believe that the ABC Machine (or cluster of such modules) as described above and defined in more
detail below provides an ideal computing architecture for cognitive computing tasks for the following
reasons:

" Computing operations over tokens and strings of tokens is highly suited to symbolic computing,
production systems and logic problems. In Phase 1, we demonstrated "best first" search using a
combination of the A* algorithm and a shortest path algorithm implemented in an ABC
Architecture on AFRL's high performance cluster. See below for details.

" A traditional neural network can be implemented inside an ABC Machine (or cluster of such
modules) by defining a node (region or membrane) as a neural computing node, by using 1/O
rules to pass data to other nodes, and by using rules to do the combination of data (merge tokens
into larger strings, for example). However, an ABC Machine is substantially more general (due to
rule flexibility) than a neural net and so intuitively one could claim an ABC Machine can perform
pattern recognition at least as good as a neural network (and probably better). In Phase 1, we
demonstrated character recognition implemented in the ABC architecture on the AFRL high
performance cluster.

"Agent Based Computing Machine" by Lexxle, Inc. 12

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 13

"The statistical redundancy (many copies of tokens and rules) and random selection provides the
potential to remove the brittleness of traditional Al by providing a voting or majority rule or multiple
paths capability rather than a single failed rule leading to a dead end. The "best first" search
algorithm continues to run when dead search paths are found because of this redundancy.

"* It was modeled after biological processes and natural cognition is based on such distributed,
statistically redundant paradigms, therefore the potential for new algorithms and more powerful
reasoning exists with this architecture.

The field of Artificial Intelligence has emerged since the 1970s with various computing problem classes.
Many of them follow the lines of symbolic computing that is largely based on logic, search and symbol
manipulation.

Expert systems are programs that capture expertise and store them as facts and inference rules. To
study the computational properties of expert systems, it is necessary to capture a description of them
more formally. The approach usually taken is to describe an expert system more formally as a production
system that is generated by context sensitive rules (Charniak, 1986). For example, the following abstract
rules typify a portion of an expert system:

Rule 1: A-->B
Rule 2: A and B - C
Rule 3: Band notA-> Dand E
Rule 4: CorF-->H
Rule 5: D and (H or I) - J and K
Rule 6: H, J and K - Not B and Not D and Not E
Etc.

These rules are in the form of logical expression. Each context sensitive input (left hand side) implies an
unambiguous conclusion (right hand side). A production system begins by a statement of logic or list of
predicates such as: B and F, which can be described as state {B, F} which is the set of true predicates..
From here, the rules begin to process by forward chaining (Charniak, 1986) with steps such as follows:

Input: B and F, initial state is {B, F}
Rule 3 -- D and E. New state is {B, D, E, F}
Rule 4 -- H. New state is {B, D, E, F, H)
Rule 5 -4 J and K. New state is {B, D, E, F, H, J, K}
Rule 6 -4 Not B and Not D and Not E. New state is {F, H, J, K}

If this were the end of the search, the answer or result is the set of predicates {F, H, J, K}. The same
result can be achieved through other search strategies such as backward chaining (Charniak, 1986).

For the purposes of an ABC Machine implementation, production systems can be thought of as agent
based models (ABMs). A production system would potentially involve a large multiplicity of copies of the
initial state in the form of string objects for each predicate. The agents, which are instructions would then
execute in multiplicity.

There is no guarantee that an expert system consisting of ABC Machine instructions will converge, nor
can a time estimate be made. The path through the rules leading to a conclusion may vary with the
problem and the input data. This is the equivalent of a large scale agent based model (ABM) with no
guarantee there is an attractor, limit cycle or limit point. It may converge or it may be chaotic. This is not
different than an expert system implemented on a von Neumann machine, which are known to be brittle
in performance. The improvement offered by ABC Machines is that results are fuzzy because of the large
number of copies of each object. Some objects may have reached a conclusion while others may have
taken a dead end path in the search space. Due to the presence of a large number of copies of each
operand, if there is a path, some (and hopefully the largest concentration of) the objects will eventually
reach that solution. The concentration of the solution objects will be less than 100% because of statistical
processing, but in a good production system design, it will be the dominant answer for all possible search

"Agent Based Computing Machine" by Lexxle, Inc. 13

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 14

paths. This is a computability advantage for ABC Machines by introducing fuzziness or soft computing
into the design.

For a system with N rules, M operands and K copies of each rule and L copies of each operand, the
storage required is KNr + MLb where r is the size of a rule in atomic units and b is the size of an operand
in atomic units on average. If the system is dominated by a large number of rules, the storage is
proportional to N. If it has a small number of rules and is dominated by operand concentrations, then the
space requirement is driven by the MLb term, which is independent of program size.

In our Phase 1 effort, we programmed an ABC architecture on the AFRL high performance computer and
implemented two algorithms that fall in the "cognitive computing" realm. As mentioned previously, these
were "best first" search and character recognition, both described later in this proposal. The success of
these algorithms led to the selection of two Phase 2 applications (see Sections 2 and 3).

1.5 Detailed Computational Example #1 - "Best First"

Pathfinding or shortest path algorithms are computer algorithms that find a way to get from one place to
another (called the start and the goal or end, respectively). Most such algorithms deal with graph
representations of the problem space which store the cost of each node. These algorithms try to find a
path along the graph with the lowest total cost, or distance. Another goal of all these algorithms is to find
this path as quickly as possible while using as little memory as possible and still find the best path. There
are many such algorithms. In cognitive computing or Al applications, depth-first search, breadth first
search or best first search is often used. Our objective is to explore how to map a best-first search
problem onto the ABC Machine architecture. But we shall first do this with a shortest path algorithm, as
this is related best-first as described below and is a good algorithm to illustrate the ABC Machine
features.

The simplest approaches are to go toward the goal until some sort of obstacle is reached then turn in
another direction, and tracing around the edges of obstacles. This is an example of a "blind-search",
where the algorithm does not rely on any information about the cost of the path to the goal in selecting the
next node to expand. A list of other algorithms in this "blind-search" group are the breadth-first search, the
bi-directional breadth-first search, Dijkstra's algorithm, depth-first search, iterative-deepening depth-first
search. There are also some algorithms that plan the whole path before moving anywhere. Best-first
algorithm expands nodes based on a heuristic estimate of the cost to the goal. Nodes, which are
estimated to give the best cost, are expanded first. The most commonly used algorithm is called A*
(pronounced A star), which is a combination of the Dijkstra algorithm and the best-first algorithm.

The different algorithms work in different ways. The breadth-first search begins at the start node, and then
examines, or expands, all nodes one step away, then all nodes two steps away, then three steps, and so
on, until the goal node is found. This algorithm is guaranteed to find a shortest path as long as all nodes
have a uniform cost. The bi-directional bread-first search is where two breadth-first searches are started
simultaneously, one at the start and one at the goal, and they keep searching until there is a node that
both searches have examined. The final path found is then the combination of the path from the start to
the intersection node, and the path from the goal to the intersection node. Dijkstra's algorithm looks at the
unprocessed neighbors of the node closest to the start, and sets or updates their distances (in terms of
cost, not number of nodes) from the start. The Dijkstra algorithm expands the node that is farthest from
the start node, so it ends up "stumbling" into the goal node just like the breadth-first search; it is
guaranteed to find the shortest path. The depth-first search extends nodes (it extends a node's
descendants before its siblings) until it either reaches the goal or a certain cut-off point, it then goes onto
the next possible path. The iterative-deepening depth-first search is like the depth first search, but the cut-
off point starts at the straight line distance to the goal, and once all nodes up to that point have been
expanded the cut-off point is incremented and the search is run again. The best-first search algorithm is a
heuristic search algorithm, meaning that it can take into account knowledge about the map; it is similar to
Dijkstra's algorithm, but it goes to the node closest to the goal, instead of the node farthest from the start.

"Agent Based Computing Machine" by Lexxle, Inc. 14

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 15

The A* algorithm works much like the Dijkstra and best-first algorithms only it values nodes in a different
way. Each node's value is the sum of the actual cost to that node from the start and the heuristic estimate
of the remaining cost from the node to the goal In this way it combines the tracking of previous length
from Dijkstra's algorithm with the heuristic estimate of the remaining path from the best-first search. The
A* algorithm is guaranteed to find the shortest path as long as the heuristic estimate is admissible (an
admissible heuristic is one that never overestimates). If the heuristic is inadmissible then the A*
algorithms won't find the shortest path (or a path at all), but it will find a path faster and using less
memory. While the heuristic must never overestimate, the closer it is to being correct the more efficient
the A* algorithm will be; in fact, the Djikstra search is an A* search, where the heuristic is always 0. This
algorithm also makes the most efficient use of the heuristic function, meaning that no other algorithm
using the same heuristic will expand fewer nodes and find an optimal path, not counting tie-breaking
among nodes of equal cost. One of the problems of the A* algorithm, as well as many other pathfinding
algorithms, is that they take up a large amount of memory by storing all previous nodes or all previously
take paths.

Shortest Path Algorithm and Best First Search

We shall first explore specifically the shortest path algorithm as it is structurally similar to the rest as
discussed above. ABC machines could be useful in the resolution of shortest path. The algorithm we
evaluated in Phase 1 works more like sending a bunch of "rats" into a maze and finding which rats utilize
the shortest distance to get to any particular node (blind search with multiple copies taking advantage of
the ABC redundancy). The components and the algorithm are described below.

The algorithm for shortest path in the ABC Machine implementation has tow process components. The
first is a "Path Discovery Cycle" that contains the "rats" that crawl through the graph and find paths to its
various nodes. (The "rats" are represented by strings). The second is the "Path Comparison Cycle", that
compares reported paths to various nodes in the graph and consistently maintains record of which are the
shortest for any given node. Figure 7 below illustrates the algorithm.

Vertices
The graph would be represented by its
vertices. Weight is recorded by repetition of
the symbol corresponding to the
destination. The first character always 4 a 2,10,•3 2
refers to the node while the latter ones
show what paths are available from the
given node. 2

adb N
bd3e10 56
a4f

dg4c f~e2 10
eg

6

gf
f Graph Borrowed From Data Structures and

Algorithm Analysis in Java, Author Allen Weiss,
(note: super script represents repetition) 1999, 0-201-35754-2, page 304

Figure 7. Shortest Path Graph.

"Agent Based Computing Machine" by Lexxle, Inc. 15

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 16

In this representation of shortest path, Ta Represents our exploration "rat" with starting node "a". The
purpose of the symbol T is to prevent the system from confusing the exploration "Rat" with a vertex.
There will be N copies of Ta introduced into the system as well as N copies of the vertex mappings. This
ensures the proper redundancy and resources for the system to evaluate the shortest path. Now, we
explore these two cycles in more detail.

Path Discovery Cycle

As the "rat" (who is one of many) floats around in our region filled with vertices it will eventually find a
vertex that has an initial character identical to that of the "Rats" ending character. Initially, with the-vertex
mapping provided in the illustration above, the first match to be made will be with a "rat" Ta and copy of

2vertex adb

1. We break first the vertex apart into a d bb where "a" is a node which goes to d with a cost of 1
and b with a cost of 2. (This part could optionally be omitted if we enter in all vertices individually
instead of in groups.. .the purpose of the groupings here are to encourage exploration of the
optimal choice first as can be seen below in step b).

a. Next we repel any path containing destinations that are already in the string... (on this first
comparison there will not be any for this graph)

b. Second, we then compare which path is shorter d or bb. We conclude that d is the
shortest and append that path onto our "rat's" string.

The conclusion of this process results in our exploration "rat" holding a path of Tad

2. We then copy this discovered path to the path comparison cycle for further evaluation with the
results reported from other "rats". The original copy is left in the discovery cycle to seek other
matches and repeat the above process.

3. To help ensure that the optimum choice is taken at each step we can reassemble the remaining
paths from that node for future iterations of step 1. In this example there was only one other path
(b2) for the initial comparison, so we simply append an "a" in front of it and leave ab 2 to be
explored by another exploration "rat".

We then continue this cycle with our "rat" of path of Tad as it encounters vertex dg4 c5f~e2 (or any other
string starting with symbol "d").

Path Comparison Cycle

The next part of the processing is the path comparison cycle. Here we take the two stored paths:
Tad - From example above Tab2 d3 - from another concurrently explored path

The process proceeds as follows:

1. Look for paths with same ending character and compare.

2. Path with shortest distance (I.E. fewer characters) survives.
(note: remember that the superscript represents repetitions of a character)

Tad has fewer characters than Tabbddd therefore Tad gets the vote over Tab2 d3 and Tab 2d3

gets destroyed and its resources are released back into the path discovery cycle.

"Agent Based Computing Machine" by Lexxle, Inc. 16

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 17

The cycle will continue until the process is halted.

Our result may be obtained by looking at the only remaining values inside the path comparison cycle with
the desired node on the end.

For example: our result for shortest path for node d is Tad

Mapping of Shortest Path Algorithm to ABC architecture

In this architecture, the described "Cycles" would actually be mapped to regions of the system. The outer
region would contain our path discovery cycle and would be filled with N copies of all the vertices as well
as N copies of our "rats". Also in this region would be a variety of miscellaneous symbols required for
generating copies send to the inner region containing our path comparison cycle.

Figure 8. Illustration: Example of ABC regions and contents

a a a a a b Path Discovery

adbb b b b c c
c c c d e

caaaafffff adbb a f g
Path Comparison

Tad

adbb
caaaafffff Ta

Rule: *d, *d -> Keep shortest,
Ta Tabbddd obliterate longest and dump its

resources into outer region

Ta Tad

Rule: T*a, a* ->Break into vertex components

Rule2: T*a, Components -> append shortest Component to T*a, copy to path comparison region,
Remaining Components

Rule3: Remaining Components, a -> Reassemble Remaining Vertices with node prefix

Applications of the Shortest Path Algorithm Methodology

The procedure below shows how to apply the shortest path method. Utilizing the shortest path algorithm
method:

1. Must generate the vertices of the graph
a. This can be done ahead of time (graphically specifying all possible states that can occur

in a graph).

"Agent Based Computing. Machine" by Lexxle, Inc. 17

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 18

b. This can also be done by generating new vertices "on the fly" dynamically producing the
graph as we move along. This would mean our graph is in a constant state of
development, and is not the same from one nanosecond to the next as it is added upon.
This would require a change in the defined procedure for step 1 of the cycle be altered so
that instead of breaking the given string down into its potential vertices we produce the
new vertices based on a heuristic.

2. We must also come up with a means of determining which path is the optimal choice at each
given state. Recall the shortest path example where we always attempted to follow the vertex
with the smallest weight.

3. Although we are applying concepts from the shortest path algorithm listed above, this does not
necessarily mean we have to look for the shortest path. Alternatively we could introduce other
criteria for which to compare and eliminate other than that of path length.

4. Although the shortest path example used symbols for nodes and their connecting paths, we can
replace these with strings enclosed with terminal characters if necessary to help in a variety of
other applications where a single symbol wouldn't be appropriate.

This example uses a method of generating vertices dynamically as it encounters a vertex pointing to
itself. Our goal is to find a path that will get us to our goal (or to the heuristically closest solution we can
find).

Vertices Initial State
X represents blank slot and U is a separator
to discern state representations. 2 8 3

1 6 4
283164X75U2831647X5 7 X 5

Goal State

1 2T 3

_____7 18 jX
Figure 9. Exploration path T2831647X5

Path Discovery Cycle

The next phase is the path discovery cycle, explained by the procedure below.

1. Trailing string of exploration path is matched with leading string in vertices.
a. If encounters a node with a vector to itself, generate potential vertices from this node and

corresponding self pointing vertices for further subsequent generation of graph,

b. Otherwise jump to step C (IE encountered a vertex not pointing to itself, hence do not
generate new vertices)

"Agent Based Computing Machine" by Lexxle, Inc. 18

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 19

Initial Vertices Resulting Vertices

2831647X5U2831647X5 2831647X5U283164X75U28316475X U2831 X4765
283164X75U283164X75 - for further graph generation
2831 6475U•J28316475X
2831X4765U2831X4765

c. Pursue which path is determined favorable if any (best first optimization). For simplicity of
our illustration we will assume that the first path from the node (marked in red) is the
heuristically preferred path.

Vertex (before): 2831647X5U283164X.75U28316475XU2831X4765

Update Exploration Path: T2831647X5U283164X75

Vertex (after): 2831647X5U28316475XU2831X4765

d. Vector is left for other exploration paths to discover in parallel
e. Cycle is repeated continuously as the "rats" wander through our graph

2. Copy Exploration Path to Path Comparison Cycle
a. Compare strings on end of paths (component following last U). Keep path with fewer

discrepancies in the ending string based on our goal, destroy the other. Resulting condition
will be finding a solution closest to our goal until we actually find it.

Summary --Best-First or Breadth-First?

The approach of shortest path discovery by the ABC machine is to define the connectness of the graph
and disclose the starting points of the desired path and let the machine go. The more starting points you
allow the machine to begin with, the more diverse short-trip discoveries can be made and added to the
collective.

With Respect to graph traversal, the ABC machine exhibit swarm like behavior with a very large number
of agents independently working unique solutions with the added benefit of the collective's past
successes. Unlike swarms, however, the ability of each individual agent can be and is much more
complex and flexible. Additionally, the ABC has the ability to let each agent contribute to a global memory
architecture that maintains shortest paths found by the collective.

Future implementations could subdivide the problem based on a set of rules and then investigate the sub-
problems in Multi-swarm fashion the difference being that each split could approach the problem from
different ends/starting points yet still contribute to a central memory.

This type of behavior seems ideal when exploring large search spaces. Some particles will explore far
beyond the current minimum, while the population still remembers the global best. This seems to solve
one of the problems of gradient-based algorithms.

The above algorithm would by its nature be best classified under a parallelized breadth first approach.
With the optimization, it could begin to take on the nature of a best first search, as it would be adding
search optimization unto a breadth first system. Therefore rules could be introduced such that our "rat"
would decide which direction to take based on things such as hamming distance or any other criteria that

"Agent Based Computing Machine" by Lexxle, Inc. 19

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 20

would be acceptable to a particular problem. The result could be a search that behaves more as a best
first search where it would look for the best choice toward the goal at each comparison.

The shortest path and its potential breadth first search implementation were presented in sufficient detail
to establish the case for the applicability of symbolic computing paradigms to the ABC Machine. This
section will be referenced as the system design evolves.

1.6 Detailed Computational Example #2 - "Pattern Recognition"

Pattern recognition is a class of problems that traditional von Neumann architectures do poorly and neural
network architectures do reasonably well. It can be argued that ABC Machines should be able to do
pattern recognition very well, and at least as well as neural networks. The reason for this is that neural
networks can easily be implemented in an ABC Machine, but the architecture of an ABC Machine is a
much more powerful generalization of neural networks. Why is this the case? Each node in a neural
network could be implemented in a ABC Machine region with a more general instruction set than the
simple additive mechanism of neural nets. The network could be "programmed" through suitable
pathways to implement a neural network node integration. The network connections could be formed
using directed I/O instructions.

For example, a neural network node received inputs from multiple other nodes and integrates the results
into a single value that represents a signal level. This can be tracked by appending a token to a string
corresponding to the level of stimulation, and then systematically digesting the tokens off the string as a
function of time to diminish the signal. For example, consider the token C (for carrier) and the token S (for
signal). An integrating instruction can be represented as:

(SlS 2..SNC, SlS 2..SMC) -4 (SIS2..SN+MC, C)
which yields a larger signal string SlS 2..SN+MC that might possibly be exported to the next node. At the
same time, a digestion instruction insures that these strings do not last long and exists in concentration
as:

(S1S2..SNC) -4 (S1S2..SN-1C, S)
The export of strings to the next node takes place using an I/O instruction of the form:

(SIS 2..SNC II) -4 (11 SlS 2..SNC)
This moves strings, short and long, to the next node which can then measure signaling strength by the
value of < SlS 2..SNC > for different N.

Another mechanism for pattern recognition with the ABC Machine can be illustrated by considering the
problem of the recognition of characters (A, a, B, b 0,1,2). It is motivated by the binary image
processing techniques presented by Horn (1986) which aggregate dark spots and count features of the
resulting shape. Figure 10 below shows a simplified version of such an image.

A tree can be used to represent the image as follows:
{(0000000), (0000000), (0000000), (0000000), (0100000),
(0 1 00000),(01 00000),(0 1 1 1 1 10) etc...}

Many copies of this tree may be passed to an ABC Module for evaluation. This is due to the statistical
processing requirement. The way it works is to aggregate regions into three layers or processing regions.

The first layer is the "reader layer" which is fed a binary string representing black and white for 0 and 1,
each of which is an image pixel making up a part of the character. The second layer is a "processor
layer" that counts the instances of neighboring ABC Machine or region that match the string values
contained for each ABC Machine region by keeping an expression level of strings of various lengths. It
can "ligate" strings of various lengths in a given neighboring direction. The third layer is a "processor
layer" which operates on ligated strings and counts directional changes by expression levels. For
example, the A and B characters will result in dramatically different expression levels (an "expression
level" is the vector describing the concentration of a list of operands in a region) and hence that serves to
identify the character. Each character to be recognized is represented by a different processing region.

"Agent Based Computing Machine" by Lexxle, Inc. 20

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 21

The different approaches show that many approaches can be evaluated for the best fit for a pattern
recognition problem due to the high flexibility of the ABC Machine architectural concept.

Figure 10. Binary Image of a T.

The pathways (instruction sequences) that are used to process each character implement standard
binary image processing algorithms (Horn, 1986) such as run length encoding (which calculates the
length of a binary run of is), pixel counting (i.e., how may l's are there), location of the centroid (as
determined by thinning, resulting in a remaining remnant), etc. Horn (1986) provides many such
algorithms and only experimentation (or genetic programming) can determine the best fit. The resulting
"features" are ligated into a string whose concentration is evaluated by a sorting algorithm which could be
implemented with digestion and ligation rules.

In fact, an ABC machine could be thought of as a generalization of a neural network. This is because a
neural network can be implemented in an ABC machine architecture by allowing every node to be a
membrane or region containing the neural integration function. Every connection in the neural network
can be implemented through region I/O instructions sending results to other regions. While a neural net
can therefore be implemented in an ABC machine, an ABC machine is substantially more general (and
hence potentially more powerful) than a neural net.

Now, for some specific details on how to implement a character recognition solution in the ABC Machine
using several methods will be presented. Traditional ANN classification systems work by training it:
presenting a set of prototypical data to the network and letting the network adjust itself incrementally
arriving at an optimal organization of weight-connected nodes that accumulate a vector. After the
network has been trained, unclassified data is presented to the network producing a vector that then must
be interpreted by the user.

In a large distributed statistical processing architecture the process is different. Training the network
involves populating Identity Regions with large variations of the matchable patterns with each region
'knowing' about a particular category. In character recognition, training would involve describing the letter
'A', for example, in a variety of different typestyles using different orientations and scripts. All of these
variations would be placed in a single Identity Region.

The Identity Region might also maintain 'Stream Metrics' that define the regional category strings in
abstract ways like front/back weight, balance, and symmetry. Another Identity Region would be fed a
variety of definitions of 'B's. A 'defined string' is described in terms of the a single character string built by
sectioning an NxN matrix that circumscribes the character and evaluating each element at i,j as 'on' or
'off (1 or 0) or by evaluating each section for graduations of 'on' (1 ,a,b,c,d,e,f,0, perhaps). There is no
requirement that the Identity cell describe visible objects. Training can be done by traditional 'supervised
training' methods but Epoch and back-propagation are unnecessary because the system already knows
how each possible character is defined and does not depend of network weight corrections. The
algorithm is outlined below.

"Agent Based Computing Machine" by Lexxle, Inc. 21

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 22

Categorization Method

while there are comparison units in the most nested region
1. Each comparison unit has a reference to the subject to be classified.
2. For each comparison unit: (implying simultaneity, NOT a loop)
3. Two random elements from any two (including the same) Identity Regions are chosen.
Selection can be done by proximity as the comparison units chaotically move around the
region.
4. The element 'more like*' the subject plus the comparison unit are promoted 'out' one level
to an encompassing outside region. If there is not yet an outside region, one is created.
end while;

remove reference to nested Identity Regions
while still refining the categorization

while there are comparison units in the most nested region
1. Each comparison unit has a reference to the subject to be classified.
2. For each comparison unit: (implying simultaneity, NOT a loop)
3. Two random elements are chosen. Selection can be done by proximity as the comparison
units chaotically move around the region. -
4. The element 'more like*' the subject plus the comparison unit are promoted 'out' one level
to an encompassing outside region. If there is not yet an outside region, one is created.
end while;

destroy most nested region
end

The first 'pass' of comparisons are made from Identity Regions while subsequent passes are only made
from promoted Identifiers. As time progresses, only the Identifiers that are more like the previous
classifying subjects are left. It should be noted that comparison time is not necessarily linear and depends
on the number of simultaneous comparisons that are able to be made

*For the purposes of this experiment, in all comparisons 'most like' will be determined by Hamming

Distance.
The Hamming distance between two character strings is the number of positions in which the
characters of the two strings are different.

As we get further into experimentation other possible string matching techniques like Edit Distance or
Dice's Coefficient matching or for more biologically inspired techniques like Smith-Waterman-Gotoh
distance or BlastP similarity tests might be considered. A cursory examination of a variety of string
matching techniques can be found at http://wvmj.dcs.shef.ac.uk/-sam/stringmetrics.htm!#hamming.

----------------- E J

Er

t
5

------- --

C)

Figure 11. Shows concept of Identity Regions and string representation of characters.

"Agent Based Computing Machine" by Lexxle, Inc. 22

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 23

We have previously discussed implementing pattern recognition on the ABC machine by encoding the
data into strings of N characters in a methodical way. Using our example of encoding letters for character
recognition, for example, we could use a 5x5 grid overlay on a recognized character and represent that
scan with a string of l's and O's representing 'on' and 'off' bits when the majority of a grid point was
occupied by the stroke of the character being classified.

Traditional character pattern recognition involves similar representations with each sector of the grid
representing an input into the Neural Net. Each of those are then connected to n hidden-layer nodes and
each of those are connected to an output with the total number of outputs equaling each possible
classification. After feedback training, with a quality representation of a set of inputs and outputs, the
network can classify even noisy and faulty input with a significant degree of success.

In the ABC machine implementation, however, no training is needed. The training data can instead be
represented in the network as a set of stored 'memory' that is accessed and used for comparison with the
subject being classified. Because there is no training involved, additional profiling data can be added to or
taken away from regional 'memory' dynamically to aid in classification while the machine is running.
Further, the restricting of inputs is lifted and additional classification criteria can be used to improved the
accuracy of a solution.

For example, while comparisons to the bit string representation mentioned above are being used for
classification, other evaluations of the string can augment the quality of selection. Just like humans use
characteristic clusters to aid us in recognizing objects, the ABC machine can make more accurate
comparisons by analyzing the data stream for "Metrics": groups of bits, pairings, string weight or density,
color, runs of white or dark space, and perhaps even edge detections or the effect of specific mutations or
operations on the bit stream and their result. Even more exotic matching metrics could be discovered by
building and evolving the Metrics rule sets genetically or by incorporating probability or other statistics.

Simple character recognition using simple Hamming distance has been shown to be successfully even
with noisy data even in examples when a human could not make a valid classification. In the future, the
classification rule set will be expanded to facial recognition by including photographic metrics including
color, contrast, heat points, and edges and for even human-observed characteristics like young, old,
white, black, Asian, Hispanic, etc, plus potentially age-related metrics and automated age-progression
technology (Ricanek, Patterson, Midori). Names don't matter because they only are used to define a
string pattern that represents that characteristic: the ABC only uses that named stream to evaluate some
measure similarity of it to the subject being classified.

During Phase 1, we successfully implemented a simple character recognition in the ABC Machine
architecture with good results. With 100 initial comparisons (to build the first tier of 'good' guesses) the
simple Hamming distance and nothing else gets it right even with noisy input. We used the characters A,
B,C,D,EF,1,2,3,4,5 & 6. The entire process ran in 0.54 seconds.

Basically, there has to be enough tier one comparisons to make the probability of getting a 'correct' guess
very good. Even with only 10 tier one comparisons it got it right 8 times out of 10. The two times it didn't
guess 'E' it guessed '6' which is not bad considering if it never saw an 'E'.
Also, we have realized that the Hamming distance only has to be calculated once for a given class, so
that will save a lot of time when more complicated.

In summary, an overview of classification method in the prototype of the ABC Machine is outlined below:

"• Classification objects are preprocessed to be represented in a stream of characters or atomic
objects.

o For example, to recognize a letter for character recognition a nXm grid is superimposed
on top of the letter and grid squares that are predominately occupied by the stroke of the
letter are represented as a '1' in a stream of 'l's and 'O's that is n-m bits long
corresponding to the n rows and m columns in the grid.

"* A bitstream that represents each desired class is inserted in to a matching region.

"Agent Based Computing Machine" by Lexxle, Inc. 23

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 24

o For future classification enhancement it is possible to include separate regions for sub-
classes ie: you could have a serif region and a san-serif region to improve making
parameter distinctions that you already know about before classification. Another
example is that each region could be a character trait of a human face: male, female,
black, white, Hispanic, Asian, old, young, etc.

o Encoded in the stream or included with the object is the class identifier.
0 Through a time limit or through a fix number of trials, the subject to be matched is compared with

two randomly selected class bitstreams.
"o It is not necessary for them to be unique and in fact variety in the class descriptions could

greatly improve the quality of class matching.
"o The stream of the randomly selected pair that is most like the subject being classified is

moved into an upper 'Staging' Tier.
0 After the time limit, the process is repeated on the upper staging tier except that instead of

selecting comparison members from a class they are selected from the staging tier.
, The process can repeat until there are no more upper tier members left or until a fixed amount of

time.
o If comparisons have reduced your classifiers to a single bitstream then it is the most likely

candidate for a match.
o With a time-limited approach, it is possible to get a description of the class through the

use of a frequency table of classified objects. Recall that the solution presented in the
ABC machine is the state of the machine in time. If you evaluate the frequency of a class
of streams in a staging tier then the profile of the streams is the expression of the
likelihood of a future match. For instance, with a facial recognition example, if after 10
seconds you have made 100, 000 comparisons and have received 22% 'White'
classification stream matches while receiving < 5% other class matches you can predict
that the final recognized match will be white.

o The chaotic nature of the ABC machine helps to generalize solutions because it finds
matches without bias. The primary limitation on class matching is set size: you have to
work to ensure that you have a high probability of grabbing enough classes to confirm a
match hence the distribution of the problem over a large number of machines. However,
even with the limitation you can likely still build a profile of the class of the subject

Some things to consider regarding our results for this exercise are:
"* The ABC machine implementation needs no training. With a Neural Network, time must be taken

to acquire quality matches and to adjust the network for a set of weights for future classification.
Also, if there is another class of data to be added to the network in the future, the entire process
of training has to be redone. The ABC machine has no such limitation: to add classes you just
add them. It could even be done while the program is running!

"* Neural Network classification is simple! There is no reason to limit matching classifications to
simple stream matches (ie: Hamming distance, String matches, run-length encodings, stream
metrics etc). Because the classifications are done by rule matching, there is no limit to the type of
evaluations performed between types of classes. In the ABC machine, it is perfectly valid to
determine class similarity by string matching in one case but by performing some mutation of the
stream before comparing to another!

"* By building frequency profiles you can get the same 'fuzzy' classification inherent in ANNs. Often
noisy or 'outlier' inputs won't match to exact outputs but the network can present output in terms
of percentages. Frequency tables provide the exact same benefit to noisy and/or completely alien
input.

1.7 ABC Machine Formal Definition

An ABC Machine is a specialized form of an Agent Based Model (ABM). An ABM is a model consisting
of multiple "agents", which are entities or processors that act on their own behalf with a set of rules. For
example, the human immune system response is an ABM that is also an ABC Machine. Each cell type

"Agent Based Computing Machine" by Lexxle, Inc. 24

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 25

can be thought of as an agent or ABC Machine membrane. Each has their own rules of operation.
Agent based models (ABM) may be ABC Machines, but in general are not. Not all ABMs have rules that
follow a membrane computing paradigm.

A traditional von Neumann computer is not an ABC Machine. It is a control flow architecture and does
not obey the principles of stochastic dataflow computing. An ABC Machine can be simulated on a
traditional von Neumann machine to the extent that random numbers can be generated to represent the
behavior of a large number of objects. Such a simulation would require a very large memory to account
for all of the ABC Machine regions, objects, states and rules.

The instructions in an ABC machine are simple string operations. However, it was shown above that a
combination of such instructions in a region can compute logic gates (or other logical computation).
Hence, a region (which is a large set of instructions and operands) can act as an "agent". In the theory of
agent based models, an agent is capable of making decisions and responding to context. The ABC
machine then is capable of implementing agent based models and hence the name ABC machine.

The architecture of the ABC Machine is defined by enumerating its computational features, baseline
instruction set, memory characteristics, and operating system features. This section enumerates
these items.

Definition of ABC Machine.

An ABC Machine is a "P System" (a membrane computer as defined by (Calude and Paun, 2001) that
also obeys the following additional restrictions. Rules represent a Context Sensitive Grammar (CSG) plus
rules for adding and dissolving membranes. Certain definitions of terms are defined within the list and
brief explanations are given. The list is as follows:

1) String Objects. Objects are string objects and the rules operate over string objects possibly
changing their composition by combining parts of objects together or by splicing (i.e. digesting) them.
Programs are stored as one or more strings of embedded operands and programs execute by arrival
of activating or regulating operands. Programs do not execute entirely, but only those instructions
that are instructed to become active do so.

2) Conservation of Matter. Matter is conserved. That is, the atomic elements of the string objects
remain in existence unless they are removed by an I/O operation. Similarly, no new atomic objects
may be created unless it arrives through an I/O operation or the digestion of a strong object.

3) Enzymes. Rules can contain enzymes. An enzyme is an object that is not modified by a rule but
must be present for that rule to execute and may affect the energy needs of the rule execution (see
next item).

4) Conservation of Energy. Rules may require energy tokens (represented as a specifically
designated string token). An energy token is a token that is consumed or reduced in state when the
rule executes. For example, 'appp' is an energy string token and it takes the form 'app' when the
energy object p is consumed. The token app may be converted back to 'appp' by the addition of an
atomic object p with an appropriate rule. Energy may not be created or destroyed in an ABC
Machine, but must either be present in the form of adequate tokens, made available by combining
tokens, or obtained through an I/O operation. Note that classical P Systems ignore this biologically
relevant constraint.

5) Statistical Processing. Rule processing is statistical. They contain a very large number of copies of
each operand and a rule, in general, operates many times on many copies of its operands and
produced many copies of its outcome. Program execution is massively parallel, distributed, multi-
threaded and otherwise contains no central processing unit.

"Agent Based Computing Machine" by Lexxle, Inc. 25

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 26

6) 110 Operations. It must have I/O operations across all membranes.

7) Context Dependency. Rules (also called instructions) must be context dependent. The rule must
be applicable to a membrane where it executes (not all rules apply to all membranes) and all
operands, energy tokens and enzymes required by the rule must be proximal or randomly selected
from those present. Rules may have decision making logic that respond to the environment
(concentration of operands - the state vector), and bias or "mood" as established by its history of
exection (example shown within the proposal).

8) Dynamic Membranes. Membranes may be created or destroyed by rules. Membranes are
destroyed by dumping their contents into the next level membrane above it. Membranes may be
created by forming a new membrane around a proximal subset within a membrane. For example, a
rule to destroy a membrane may occur within that membrane per the following example: X, E, appp
-- X, E, app, Xmembrane. Here, Xmembrane means remove the membrane. It can also be done at
the level of the next higher membrane: Membranel, E, appp -) X-Membranel, E, app. It may cease
to function by its own decision if it becomes defective.

9) Programming. The node may be 'programmed' by manually fixing the instruction set and operands
or through genetic programming. It contains an operating system that provides the mechanism for
copying instructions and operands from programs, delivering them to the proper location, and
providing the power for their execution upon the arrival of their operands.

10) Statistical Dataflow Computing. Rules and operands are assumed to be in "motion" within their
regions or membranes. There may exist multiple copies of rules and/or operands, perhaps a very
large number. The "motion" need not be physical motion in a given physical realization of the ABC
Machine, but it must represent a random shuffling of the rules and operands. When the operands for
a given rule come into "contact" with that rule, the rule may fire. The term "statistical" implies many
copies and the computing results are the aggregate concentration of resulting tokens. The term
"dataflow" means that rules fire when operands "arrive".

Baseline Instruction Set of the ABC Machine.

Common to representative algorithms in the ABC Machine is a baseline set of rules or instructions. In
general, rules or instructions may be any Context Sensitive Grammar (CSG) plus rules to add or dissolve
membranes. The instructions that follow are those we have chosen for the baseline design of our ABC
Machine implementation for this project. These common instructions are enumerated here, used later to
illustrate computing algorithms.

MOVE. Communication is one of the most basic and important operations in an ABC Machine. The most
basic communication rule is a "move" operator. An example of a move operator is the following:

Rk: Ek, A -' Ek, -A

What this says is that Rule k executes when Enzyme k and the string A are present. The result of Rule k
is that the Enzyme k is left unaltered and the string A is moved out of the region to the next higher region
(Region 1) of the ABC Machine. If the rule has said +A rather than -A, then the movement is to the next
lower region (Region 3), or the nearest such region if there is more than one lower region.

So if this rule were present in Region 2 above and it executed, the result would be that Region 2 would be
left with only two A strings and a B string and Region 1 would gain an A string. This is a simple move
operator and it could be thought of as just one instruction or rule among a large set that is doing
computation aimed at solving a particular problem.

"Agent Based Computing Machine" by Lexxle, Inc. 26

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 27

COPY. Sometimes it is necessary to produce a copy of a string. A rule to do this might look like the
following:

E, ab -4 E, ab, ab

The problem with this rule is that it seems to produce strings out of nowhere. But the ABC Machine has
both energy and mass conservation properties by definition. Hence to make a copy of a string requires
that there are enough atomic objects available to make the new string and there is enough energy to
execute the operation. For example, a more accurate statement of the rule for an ABC Machine might
be:

E, a, b, ab -- E, ab, ab

These notions of conservation of matter and energy come from biology. A large molecule cannot be
synthesized by a cell unless smaller molecules that are its constituents (nutrients or amino acids) are
available. Nether can it be done if adequate energy (i.e., ATP) is available. In our case, the energy can
be tracked by requiring the presence of E in the rules above, even though it does not contribute to the
production of strings.

LIGATION. Ligation is a basic string operation. It merges two strings. For example the rule:

abc, def -4 abcdef

is a ligation rule that takes two short strings abc and def and merges them into one longer string abcdef.
The rule is very string specific and not algebraically general. It was discussed above. A more
sophisticated version of ligation might be included to "insert" a character string in the middle of a string.

DIGESTION. Also discussed above was the digestion instruction. It is also a basic string operation. It

may cleave two strings or splice them in a specified way. Two examples are given below.

Rule 1: abcdef -4 abc, def

Rule 2: abcdef -- abef, cd

Consistent with our principles thus far, "matter" must be preserved. That is, atomic objects are neither
created nor destroyed by digestion, but rather they are rearranged. Rule 1 is a simple digestion that
cleaves a string abcdef into two smaller strings abc and def. Rule 2 is a splicing operation that removes a
substring cd from a longer string abcdef and leaves the remaining elements in a string abef. A more
sophisticated digestion instruction to "remove" a substring from within a string might also be included.

COUNTING. Counting is not a simple operation in an ABC Machine. It must be accomplished as a
distributed process. Let's look at two examples. The first is for a non-redundant system and the second
one is based on statistical dataflow computing principles.

A simple non-redundant system may count as follows (note that there is more than one way to count).
Suppose we wanted to count the number of atomic A's in Region 2 of the diagram above. The following
rule leads to a final state with an indication of the number of A's:

CAn-', A "- CAn

The initial state is: {A, A, A, C}. After one execution of the rule, the state is {A, A, CA}. After three
executions, the final state is {CAAA} or {CA3} and the count is 3.

"Agent Based Computing Machine" by Lexxle, Inc. 27

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 28

COMPARE. There are a number of ways to compare two strings. We may simply want to know which
string is longer. In that case, the following rule does that where sl and s2 are strings and t is an atomic
tag and Isl represents the length of s.

sl, s2, t -- tsl, s2 if IslI < 1s21, else sl, ts2

If we want to see if sl is a substring of s2, the following rule will do that:

s2 - sl, x

Here x is a variable string and the rule represents a splice type digestion rule with a variable string
outcome. If the ABC Machine enforces conservation of matter, then this rule can only execute is sl is a
substring of s2.

MEMBRANE REMOVAL. As previously mentioned, regions (or membranes) may be created or
destroyed. An instruction to remove a membrane may look like: X, E -- X, E, Xmembrane, where "X"
indicates which membrane. A similar instruction could be included to add a membrane, although this is
more complicated because it must be specified where the membrane is to be added precisely.

ATOMIZER. AN atomizer instruction breaks a string into its component atoms. It is the ultimate

digestion. I could be represented as:

a1a 2 ... an, , Eatomizer "* a1 , a 2 , ... an, , Eatornizer

STRING MATCH. A more sophisticated version of COMPARE, the STRING MATCH instruction
produces a goodness of fit between two strings, such as Hamming distance or some other metric of
similarity.

ADDITIONAL INSTRUCTIONS. Additional instructions may be added (or deleted) as the ABC Machine
architecture evolves in Phase 2..

Memory Characteristics.

Memory in the ABC machine is distributed across the regions and objects in the form of a content
addressable memory. One could think of Short Term Memory (STM) as being the state of a region - that
is what objects are present. This "state vector" represents a context for the region. All computing
responds to this context or its STM. Hence, computing is driven by the data. An example to illustrate
STM is the vector of string operands used to compute the "score" in the character recognition algorithm
above. Regions representing characters that are chosen as the answer will have higher expression
levels, or greater STM. This is a form of CAM, content addressable memory. Long Term Memory (LTM)
is distributed across the entire ABC machine. It represents the rules or the program collectively that
produce data. In particular, I/O instructions that operate on string operators and pass them to other
regions embed this LTM. This is similar, but a generalization to, the weights in a neural network. If these
instructions are modified, the way an ABC machine would "remember" a specific context would be entirely
altered. An example to illustrate LTM using the character recognition example above is the set of
instructions and their mapping to the processing regions - in other words the computer program itself.

Operating System Features.

An operating system is traditionally a software layer that mediates between an application program and
the physical hardware. The operating system in the ABC architecture should in principle be the same.
There has been no formal work to define or describe the operating system of a P System or membrane
computer. This discussion is derived by direct analogy to biological cells by viewing them as computers.

"Agent Based Computing Machine" by Lexxle, Inc. 28

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 29

However, there are some fundamental distinctions because of the distributed nature of the architecture
and because of the possible inseparability of hardware and software in some implementations. The
operating system of an ABC Machine is defined to mimic the properties of a cell operating system as
necessary to support its definition. The remainder of this section defines and elaborates on the operating
system of an ABC Machine.

Program execution in an ABC Machine is similar, but potentially far less complicated that transcription
and translation in cells. A region in the ABC is required for program storage, which is called the nucleus
for its analogy with real cells. The program storage consists of lists of possible instructions along with an
"enzyme" or activating string for each. An operating system instruction must reside in the nucleus region
that activates an instruction upon the presence of its enzyme by moving a "copy" of the rule associated
with it outside the nucleus. Such an operating system instruction looks like this:
I s = [0 = { (instruction-i, enzyme-i)} -- P = { (instruction-i I instruction-i)}].
What this says is that whenever enzyme-I appears in the nucleus, put a copy of instruction-i in the main
ABC Machine region and eliminate enzyme-i.

A cache memory of currently active instructions is analogous to mRNA in cells. Based on the definition of
a ABC Machine, there is no absolute requirement for this as an operating system function. However, in
many potential system designs, it may be desirable as a means of tracking activity. This could be
accomplished by modifying the instruction above so as not to destroy the activating enzyme, but instead
ligate it with a tag and save it. Then, <enzyme-l-tagged> becomes a measure of expression of instruction
i. A means would be needed to extinguish the tagged enzymes after a period of time, such as a half life
implemented by means of an appropriate supply of digestion instructions in the nucleus region.

As mentioned in the chart, there is no need for file management in a ABC Machine. Information is
distributed, no history is maintained. The instruction set is a form of permanent memory. The expression
levels (number of copies of each string) are short term memory and the implied regulatory networks
based upon the active instructions and enzyme networks for activating other instructions (in other words
the computer programs) are long term memory. Expression levels of strings store information.
Regulatory processes controlling instructions manage this. The built in enzyme control of instruction
activation is part of the operating system.

A mechanism for code optimization is not required by the posed definition of an ABC Machine. However,
cells have one - mRNA splicing and splice variation. To the extent that a ABC Machine maintains a set
of operating system instructions for alternative instruction compilation, it would exhibit similar functionality.
This could be implemented through enzyme strings that control digestion instructions that splice out
portions of other instructions. Because instructions are not strings, but instead relationships between
strings, such instructions could only reside in the nucleus region and be controlled by the operating
system.

Program execution requires several operating system support functions. One is that instructions must be
delivered to the proper region. Another is that sometimes strings must be tagged for digestion to
systematically eliminate them (corresponding to ubiquilation in cells). Finally, all strings and instructions
must follow a Brownian motion (random walk) within their respective regions. The latter is a hardware (or
shall we say wetware) function. The first two can be implemented by ligating tags to instructions and/or
strings and having the existence in the operating system throughout the ABC machine of instructions to
digest tagged strings and to tag them in the first place. The delivery of an instruction to an appropriate
region in the first place should be encoded within the instruction string to begin with so that chaperone
instructions will move them to the proper region when they randomly contact them. The result of all this
machinery is the underlying mechanism of statistical dataflow computing. It is built into real cells, it can
be easily simulated on a digital machine, but for all other ABC machine implementations, it must be
crafted into the engineering of design. For example, let us suppose that instruction IKx is the Kth
instruction bound for region X. An operating system instruction to move it to region X is represented by:

I KX = [0 = { (I KX)} -) P = { (I Ix I K)}; E = {transportX-enzyme}].
The double vertical bar indicates that it must cross two membranes (nuclear, region X). the X subscript is
moved from the instruction to the region to indicate the move.

"Agent Based Computing Machine" by Lexxle, Inc. 29

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 30

Figure 12. Components of ABC Machine Operating System

Operating System Function Biological Cell Behavior

Program Execution Need region for storage area for programs
(lists of available instructions and the enzymes
that activate them). An activation instruction is
needed as part of the OS that starts
instructions when enzymes are there.

Cache Memory A copy of each currently active instruction is
maintained in the program storage region
(nucleus). This is a desirable feature, but not
required for a given ABC design.

File System Support Files do not exist. Information is distributed
and represented by expression levels of
tokens, string and trees. There is no need for
central support as it is handled intrinsically by
the architecture.

Code Optimization Mapping of instructions into variants based
upon specific activating operands is a desirable
feature of a ABC operating system, but not
absolutely required.

Program Execution Policies Signaling instructions to guide strings to their
region of destination, tagging for deletion by
ligation of a symbol, and doing these functions
statistically is included.

I/O Control Need operating system instructions to control
endocytosis and exocytosis by forming
temporary regions.

Memory Management Expression levels of strings store information.
Regulatory processes controlling instructions
manage this. The built in enzyme control of
instruction activation is part of the operating
system.

Virtual Memory Memory is not fixed. A ABC can continue to
express many instructions and strings and is
limited only by its total token material obtained
through I/O operations and instruction
execution.

Scheduling of Resources There is no clock in a ABC. Program execution
is parallel and distributed and operand driven.
Strings such as enzymes schedule resources
by their presence and hence the instructions
that produce them and their activating enzymes
are responsible for scheduling resources.

I/O instructions require operating system support. The biological process of diffusion can be permitted
only if an inherent instruction designed to enable the passage of a specific string is built into the design
baseline. Similarly, I/O instructions that mimic endocytosis and exocytosis require temporary regions that
fuse with other regions to transport groups. The underlying mechanism to accomplish this should be
supplied by the operating system.

"Agent Based Computing Machine" by Lexxle, Inc. 30

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 31

In addition to the items mentioned in Figure 12, other housekeeping functions of real cells can be used as
inspiration for the design of operating system functions. For example, in real cells, apoptosis means
programmed cell death, or a biochemical pathway whereby cells destroy themselves when things go
awry. A similar pathway may be needed in ABC Machines to eliminate regions that have failed as a
means of error control. An example trigger for such a pathway may be the presence of a specific
concentration level of a "toxic" string, <toxic-string>.

To recirculate atoms or strings for reuse (conservation of mass property), the atomizer instruction could
be implemented in the outermost layer of the ABC Machine in high concentration. The operating system
would then sprinkle "move" instructions throughout all membranes that randomly moves operators out
one level at a certain rate. Eventually used and incomplete computations are recirculated.

It is possible to implement regions within an ABC machine that correspond to the "physiology" of
organisms. The paragraph above implies a "circulatory system". Other regions of specializes
functionality are possible (i.e., "central nervous system"), but the development of such concepts is left to a
future task.

Another biological concept that may prove of value is the notion of molecular chaperones. In real cells,
molecular chaperones are used to escort molecules to their proper organelles. In the ABC Machine, they
may be thought of as internal I/O instructions of the operating system that move activated instructions
from one region to another based on their encoded destination. A difference between such operating
system chaperone instructions and normal program instructions is that they operate on instructions rather
than strings and thus are the exclusive property of the operating system.

Cells have clearly understood functional organizations. Regions in cells are called organelles and each
has a well known function. For example, the nucleus stores and processes the DNA and genes, the
mitochondria produce energy from glucose and oxygen, lysosomes digest complex molecules, etc. A
well designed ABC machine will have regions with specific functions. The need for a "nucleus" to store
the computer program has already been discussed. An analog to the mitochondria is needed by any
ABC machine that uses a concept similar to ATP or energy as an operand. It would act as the power
supply, taking in external strings and converting them to energy tokens.

Lastly, the location of a membrane within an ABC machine must be an operating system function. In
many systems, this may be merely random Brownian motion and in others this may be fixed coordinates
as in cellular automata systems. But using biology as a model suggests that the most general systems
must provide for partial, but constrained mobility.

1.8 Computational Analysis

Calude and Paun (2001) showed that P Systems with "enzymes" are computationally universal, that is
Turing machine equivalent. Addison (2003) showed that the class of membrane computers that operate
over string operators with enzyme-like operands, which subsumes the herein definition of the ABC
Machine, is not only computationally universal (i.e., Turing machine equivalent), but that under certain
configurations, machines in these classes may exhibit hypercomputing performance (i.e., exceed the
Turing Machine limit). This would imply that the proposed ABC machine doing cognitive computing tasks
could potentially exhibit hypercomputing performance for some configurations, but in the very least, it is
Turing Machine equivalent. We believe, however, that the best use of the ABC Machine is in
nondeterministic implementations of cognitive computing tasks with significant computational
redundancy..

Turing machines are of theoretical interest because algorithms that can be computed on other
architectures can be mapped into Turing machines. The well known thesis called the Church-Turing
thesis that states that every "reasonable" computation or a Turing machine can carry out algorithm. This
Church-Turing hypothesis implies that there is no need to create new computers to solve each type of

"Agent Based Computing Machine" by Lexxle, Inc. 31

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 32

problem -- if a problem would yield to a "reasonable" solution, a Turing Machine could solve it. According
to the Church-Turing hypotheses, all modern digital computers are essentially Turing Machine
equivalents. This way of thinking, however, ignores computational efficiency and economy. The word
"reasonable" is extremely important.

A "reasonable" algorithm is generally considered to be on in which programs have a finite number of
instructions from a finite set of possible instructions and which comes to a halt for valid input data that is
when a solution has been found. The Church-Turing hypothesis says nothing about which procedures
are considered to be "reasonable". Godel's theorem from mathematics proves that not every truth can
be mechanically generated. Hence, there are problem classes that are not "reasonable". ABC Machines
are a class of computer that brings economy and efficiency to certain problem classes that otherwise
cannot achieve such efficiency on traditional computer architectures.

Since ABC Machines are P Systems (membrane computers) of a generalized form, then certain
computing properties of P Systems may be extended to ABC Machines. Included in this section are key
results of P Systems (Calude and Paun, 2001) that are then extended directly to ABC machines. The
main result of studies of P Systems in membrane computing is that P Systems with catalysts (i.e.,
enzymes) are computationally universal (Paun2, 2002). This means that any problem that can be solved
on a Turing Machine can also be solved on some P System with enzymes. It can then be concluded that
ABC Machines are computationally universal or Turing Machine equivalent.

This means that any problem that can be solved on a Turing Machine, including all problems that can be
solved on a von Neumann machine, can also be solved on some ABC implementation. This says nothing
about whether the design and implementation provide an efficient or better solution to the problem, but
nonetheless, the result is important.

Since nearly all work on P Systems to date has been based on P Systems with atomic objects only (i.e.,
no string objects) and has also been on P Systems with no statistical processing, the ABC Machine that
enables a certain Turing Machine problem to be solved may be one that uses only atomic objects in
single copies, although this is not necessarily the case. This implies that ABC Machines should be
substantially more capable in computing than an ordinary P System. We have already shown that their
statistical redundancy is an advantage for production systems with deep search spaces, and that pattern
recognition programs have more instructional power than neural networks and can be programmed or
optimized using "genetic programming" techniques.

The statistical nature of ABC Machines in particular is worthy of some note here. It stands to reason that
if there exists an ABC Machine that can solve a problem with objects in singular copies (i.e., no statistical
processing), then there exists a ABC Machine that uses the full statistical processing capability to
generate an approximation to that same problem solution. The argument of proof for this conjecture is as
follows. If a single instruction pathway can solve a problem that can be solved on a Turing Machine,
essentially proved by isomorphism to Paun2 (2002), then a statistical implementation would have a large
number of the same pathways. Not all of them would be executed at any point in time (i.e. have achieved
a halting condition). The overall concentration of the resulting string objects represents an approximate
solution.

What this means is that any problem that can be solved on a TM can be approximated on an ABC
Machine (as well as solved). The approximate solution is of practical significance because large scale
computing may require much less computational resources.

As described, it has long been assumed that the Turing Machine computes all "reasonable" computable
functions. There have recently emerged a variety of papers claiming new computing models that have
more than Turing Machine power. While such views are in the minority, it would be a mistake to dismiss
them. Ord (2002) summarizes the work, including work with strong claims and support, such as
Copeland (1998, 1999) and his coupled Turing Machines, Leeuw (1956) and probabilistic Turing
Machines, and Spaan (1989) and her work on nondeterministic Turing Machines. Ord (2002) shows that
each of these machine concepts has hypercomputing power, or beyond Turing Machine power.

"Agent Based Computing Machine" by Lexxle, Inc. 32

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 33

Models of computation that compute more than Turing Machines are called hypercomputers or
hypercomputing models (Ord, 2002). To show that a model of computation exhibits hypercomputing, one
must show that it cannot be simulated on a Turing Machine, yet the new model of computation can
simulate it.

Ord (2002) reports on a number of hypercomputing machines and examples. The present work shows
that ABC Machines satisfy the definition of a number of the hypercomputing models summarized by Ord
(2002) and others. Some of these concepts are purely theoretical and cannot be applied to ABC
Machines. Copeland (1999) introduces the "coupled Turing Machine". This is a Turing Machine where
one or more input channels provide input to the machine during the progress of computation (Ord, 2002).
For example, one Turing Machine may input to another while it is in progress. A coupled Turing
Machines differs from 0-Machines and Turing Machines with initial inscriptions, in that they are finite
(Ord, 2002), and therefore practical. Copeland (1999) showed that a coupled Turing machine could
compute the halting function and all other recursively enumerable functions. Turing (1939) showed that
some recursively enumerable functions required an O-Machine and could not be simulated by a Turing
Machine if a halting function is required. Hence, the Coupled Turing Machine is a hypercomputing model.
It is easy to see that an ABC Machine is a Coupled Turing Machine. Each membrane may be viewed as
a single Turing Machine and since by definition, the membranes in an ABC Machine communicate with
each other via I/O instructions, the ABC machine itself is a Couple Turing Machine in its most general
form. Hence the ABC machine exhibits hypercomputing potential (depending on the selected instruction
set, of course). This is a strong fundamental claim. An ABC machine is a finite machine by definition.
Many, if not most, hypercomputing models proposed to date have been infinite machines not practically
realizable.

Computational Properties of String Objects

As previously discussed, a string object is an object that consists of one or more atomic symbols. For
example, the strong object "abc" consists of the atomic symbols a, b and c. As used in ABC machines,
string objects may be modified by rules by appending additional atomic or string objects to them, or by
ligating them into multiple objects. A rule operation over a string objects is deemed to take one
computational step. There is no alteration to global memory requirements by string object operations
because of the "conservation of matter" principle. In other words, any objects appended to a string must
already exist before a rule is allowed to append the objects. When a ligation occurs, the resulting string
objects may not be discarded unless a specific I/O instruction or rule causes that.

The computational burden of string object processing then lies entirely in the rule processing. A rule
takes one computational step. The evaluation of its preconditions (enzymes, proximity, etc.) takes an
additional amount of time. The true computational time can only be assessed by considering the fact that
there may be a large number of copies of the same rule and operands at the same time in an ABC
Machine. If there are N copies of a string object "abc" that is operated on by a rule or instruction R that
operates in the presence of enzyme E and there is an adequate supply of E, then the computational time
for executing R must be somewhere between 1 and N time steps. It will take 1 time step if all N copies
are operated on by a copy of instruction R at the same time and it will take N steps if they are all operated
upon sequentially. Neither of these cases is realistic, it would be expected that this operation would occur
in a statistical fashion similar to a biochemical reaction process.

To quantify this, consider a more precise statement of an example concatenation instruction R as follows:
R: E, a, bc -- E, abc

To borrow from the field of biochemistry, the symbols [E], [abc], [a] and [bc] shall be interpreted as "the
concentration of" E, abc, a, and bc respectively (Becker, 2000). In biochemistry, this means molar
concentration. However, the convention will be adopted that [x] means the concentration of x in units of
1000 copies per unit area where a unit area is the average membrane size. Hence, if [x] is 4, then there
are 4000 copies of the operator x in the membrane under discussion.

"Agent Based Computing Machine" by Lexxle, Inc. 33

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 34

Having adopted this convention, it is now possible to further borrow from the principles of reaction kinetics
in biochemistry to assess the rate at which a computation over a string object will occur (Becker, 2000),
(Bower and Bolouri, 2001). Recall from the discussion above that an instruction R over a string object
takes one computation step. The time associated with that step is dependent upon several factors
including the nature of the "hardware" implementation and its components. Borrowing from the world of
biochemistry again, this is normally captured as a rate constant. Hence, the instruction R may be
represented as follows, capturing the rate constant and the concentration levels of each string object,
where k is the rate constant of the instruction:

k
R: a,bc --> abc

Since an instruction execution is completely isomorphic to biochemical reactions, the reaction kinetics
principles (Bower and Bolouri, 2001) may be used to derive the rate equations of a ABC instruction. The
instruction R proceeds then as follows:

d[a]/dt = - k [a] [bc]
d[bc]/dt = - k [a] [bc]
d[abc]/dt = k [a] [bc]

These are differential equations in state variables that are equal to the concentration levels of each
object. Such differential equations can then directly model the "state".

The statistical nature of the processing (i.e. a large number of copies of operands and instructions)
cannot be separated from the computational performance of instructions over string operators. The
analysis above resulted in the description of the structure of a differential equations model for rate kinetics
associated with computational instruction processing. The instruction execution rate, and thus the
computational time of a statistical computational process is predicted by the solution of a simultaneous
system of nonlinear differential equations as previously described.

There are circumstances when the use of differential equations to analyze processing time is overkill.
However, when the computational process is statistical, this is a reasonable model. If there were only a
single copy or a few copies of each instruction and operand, then the differential equations would not be a
good approximation to the process. Under such circumstances, with a fixed interval of time (for a single
copy) or a stochastic state transition model would make more sense. But since the definition of an ABC
machine called for statistical processing, or a large number of copies, the differential equations model for
computational time progression of an instruction shall be considered the best model.

1.9 Programming Concepts

An ABC Machine may be programmed manually or by using genetic algorithms. By programming, it is
meant that the ABC Machine is configured in a manner to solve a specific problem. This means that a set
of tokens, rules and regions must be selected along with an initial condition, in such a manner that their
execution will cause the problem of interest to be solved.

An ABC program is fully specified by the following there items:
"* Region map
"* Instructional set and number of copies in each region
"* Atomic elements and strings and their initial distribution

This is a simple, but not explicit program. It is simple in the sense that once specified, the program, "runs"
by repeated application of the same set of procedures. Therefore, software engineering should result
in relatively few bugs compared with conventional computers. The fact that it is not explicit makes
the programming as much an art as it is a science. Trial and error will be required. However, for well

"Agent Based Computing Machine" by Lexxle, Inc. 34

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 35

structure large scale problems, genetic programming may be used to optimize the program. This concept
was developed analytically during Phase I and will be implemented in Phase 2 as part of the SOW.

This rest of section describes the concept of genetic programming as a means of programming an ABC
Machine. The Phase 2 SBIR proposal will implement this as a method for programming the ABC
Machine for large scale well defined problems such as face recognition. Genetic programming is already
a developed area of Computer Science. An ABC Machine has a highly nonlinear space that cannot be
fully pre-stated. To program it is very similar to solving a complex nonlinear optimization problem in a
multi-dimensional space.

Programming an ABC Machine using a genetic algorithm requires beginning with a random population of
ABC Machine configurations that appear to solve the problem. Each of the members (a member is a set
of instructions and operands arranged in a set of regions to solve the problem) of the population will be
tested against a fitness function as the genetic programming algorithm is executed. The fitness function
must be chosen as a desirable outcome and a distance metric to it in terms of the state vector of the ABC
Machine. Only the relevant output parameters are used in this assessment.

Random variations are made to the variable parameters in the ABC Machines. These random variations
include changing operands, enzymes or products in instructions, or changing the membrane into which a
particular instruction or pathway is assigned. While the algorithm specifies that these variations are to be
random, intuition suggests that there is room here for making intelligent choices to accelerate the
programming. This can only be tested empirically. This is obviously a large and nonlinear search space
and can only be solved empirically such as with the proposed genetic programming technique. Mutation,
reproduction and crossover are simply redefinitions of the ABC Machine configuration based on the
shuffling of parameters so as to provide new populations for testing on the next iteration of the algorithm.
A specific example of this concept will be programmed and tested during Phase 1.

First, some examples of parameters that can be controlled for an ABC Machine are described. The
instruction is the basic unit of the ABC Machine program. Parameters of an instruction include the
operands, products and catalysts (tokens or strings which must be present in order for an instruction to
execute). Changing the strings that make up one or more products, catalysts and/or products in such a
way that the instruction remains well formed may parametrically modify instructions. By a well formed
instruction, it is meant that tokens making up strings are neither created nor destroyed by execution of the
instruction. Changing the regions to which products are delivered, but this is a more drastic modification
may modify I/O instructions. For use of genetic programming to alter an ABC Machine program, the
present work restricts the parametric changes to changing the strings that make up the products,
catalysts and operands in a well formed way.

There are two levels of programming that must be accounted for. These are the programming of an
individual ABC Machine rules and tokens through genetic recombination. It must be accomplished by
using genetic recombination to select parameters for individual ABC Machine configurations (software).

It is also important to stress that ABC Machines may be implemented manually rather than through
genetic programming. This is an engineering decision. It may be easy or convenient to set up an initial
solution. But due to their high complexity, it is unlikely that a manually derived solution will be optimal in
any sense. Further, it is difficult to imagine that traditional analytical techniques can be used to derive an
optimal design in a problem space with such high state dimensionality by other than an empirical
optimization method like genetic

As an example to illustrate programming the ABC machine by genetic programming, consider the
character recognition program previously discussed. Suppose the implementation called for one output
region for each character and an expression vector corresponding to a fixed set of strings to count the
output. One may represent the instruction set in the regions parametrically - using a random collection of
ligation, digestion, logic and I/O operators that could be "genetically recombined" by exchanging pieces of
the instruction with other instructions. For example, the two instructions:

"Agent Based Computing Machine" by Lexxle, Inc. 35

Lexxle, Inc. SBIR Phase II Proposal, Topic # AFO5-109, Proposal # F2-2873. Pg. 37

Figure 13.

Flowtc!hart for Gein eticý Programming

'Createo Init~ial

Poandon Pipulat t

u individualstd -

I 4- 1 irndividu_1

First, some examples of parameters are described. The instruction is the basic unit of the p~rogram.Parameters of an instruction include the operands, products and enzymes. Changing the strings that

make up one or more products or enzymes and/or products in such a way that the instruction remains
well formed may parametrically modify instructions. By a well formed instruction, it is meant that tokens
making up strings are neither created nor destroyed by execution of the instruction. Changing the regions
to which products are delivered, but this is a more drastic modification may modify I/0 instructions. For
use of genetic programming to- alter a program, the present work restricts the parametric changes to
changing the strings that make up the products, enzymes and operands in a well formed way.

There are two levels of programming that must be accounted for. These are the programming of an
individual ABC machine through genetic recombination. It must be accomplished by using genetic
recombination to select parameters. The latter may require that not all machines are programmed the
same, and therefore some degree of genetic recombination akin to developmental biology and its
associated genetics may be required. While this may sound extremely complex, and it can be, the
approach taken here is a simple first order implementation plan of each.

"Agent Based Computing Machine" by Lexxle, Inc. 37

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 38

It is also important to stress that programming ABC machines may be implemented manually rather than
through genetic programming. This is an engineering decision. It may be easy or convenient to set up an
initial solution. But due to the high complexity, it is unlikely that a manually derived solution will be optimal
in any sense. Further, it is difficult to imagine that traditional analytical techniques can be used to derive
an optimal design in a problem space with such high state dimensionality as an ABC machine by other
than an empirical optimization method like genetic programming.

Programming requires beginning with a random population that appear to solve the problem. Each of the
members of the population will be tested against a fitness function as the genetic programming algorithm.
The fitness function must be chosen as a desirable outcome and a distance metric to it in terms of the
machine state vector. Only the relevant output parameters are used in this assessment.

Random variations are made to the variable parameters, as the case may be. These random variations
for an ABC machine include changing operands, enzymes or products in instructions, or changing the
membrane into which a particular instruction or pathway is assigned. While the algorithm specifies that
these variations are to be random, intuition suggests that there is room here for making intelligent choices
to accelerate the programming. This can only be tested empirically. This is obviously a large and
nonlinear search space and can only be solved empirically such as with the proposed genetic
programming technique. Mutation, reproduction and crossover are simply redefinitions based on the
shuffling of parameters so as to provide new populations for testing on the next iteration of the algorithm.

Figure 14. Genetic Programming of ABC Machines

Genetic Programming Application to ABC
Initial Random Population Initial instruction Set and

Membrane Mapping for N
variations

Termination Condition Fitness Function of Best Run
Exceeds Preset Threshold

Fitness Function A distance metric is applied to
relevant subset of the state

vector

Mutation Randomly vary an instruction
parameter or membrane

boundary

Crossover Combine half the instructions
and membrane boundaries
from one ABC with another

Reproduction Define a new ABC by
combining the crossover

information above

1.10 Cluster Mapping

Based on a review of the commercial opportunities, an evaluation of potential physical implementations,
and attendance at the July 2005 workshop on Cognitive Computing at Cornell University, it was decided
that the best near term implementation of the ABC Machine architecture is on a high performance cluster
(HPC). There are several reasons for this conclusion:

"Agent Based Computing Machine" by Lexxle, Inc. 38

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 39

* The market for specialized computer hardware boards is fragmented
* The Cornell workshop identified a need for more compute power applied to Ai and cognitive

computing algorithms, rather than customer machines, essentially pointing toward using high
performance clusters to emulate the ABC Machine rather than customize them

0 While there is a proliferation of HPCs in the market, the software for them and utilization of them
at full capacity is lagging behind, leaving the door open for more applications

* Biological implementations are not feasible in the immediate future, although promising for the far
future

* Single machine emulation will not offer enough compute power for the redundancy required by
the ABC Machine architecture

This section describes how the ABC machine or Agent Based Computer can be mapped onto a HPC as
determined by our Phase 1 study. In review, an "ABC Machine" is a biologically inspired computing
device that works on complex problems by defining those problem in terms of massively redundant
strings and operations on those strings over time. Solutions are presented in terms of the state of the
machine at a given point in time in the future and vary according to the way the problem is defined.

We proposed implementing the ABC machine on a cluster because of the wide availability of existing
software to program one and the ease at which the size of the cluster can be scaled. Clusters are cheap
to build and widely available using commodity hardware. Developing the implementation of the ABC
machine with libraries like MPI ensures the software will be portable, easier to maintain, and extensible.

The following are the key features available when implanting an ABC Machine on a HPC:
"* Threaded message passing and Core operations for maximum CPU use.
"* Minimized administrative message-passing overhead helps to scale processing power relatively

with the size of the cluster
"* Aggregate memory and CPU speed allows solution-seeking over a large problem domain
"* Standard cluster programming library MPI used to encourage portability, maintenance, and

extensibility
"* The machine will be straight-forward to program for a knowledgeable researcher/user with

reasonable programming skills.
"• Interfaces built on modern programming standards and APIs facilitates incorporation of the ABC

Engine as a component in larger software projects
"• Includes an optimized set of Core Foundation Rules that can be extended and/or grouped

together to form more powerful string operations (ie Enzymes)
"* User-adjustable Atomic Density and Rule Density to simulate organic concentration
"* The current ABC Engine is written in C for speed and final implementation is proposed to be

written in Object-Oriented C++ for even greater encapsulation, abstraction, and flexibility.

There are two contrasting approaches for mapping the computations from the ABC architecture onto an
HPC. We call these "holistic", where the entire cluster acts as a single device, and "redundant partitions",
an approach which takes advantage of MPI (message passing interface). Each is described below:

Holistic Approach. In the Holistic approach, the entire cluster acts as a single device and every atomic
element exists in a single Universe. Because there is only one Universe, or problem space, the number
of individual atomic elements can be very large. As each node on the cluster acts on a sector of the entire
space, the size of the problem space is limited only by the aggregate size of the cluster's memory.
Additionally, a large atomic element size preserves the statistical nature of the ABC machine's operation

and makes generalizing the solution more straight-forward.

The Universe is mapped into n sectors, a sector being an MPI node, with open boarders. Atoms are free

to travel between the sectors of the Universe and beyond the hyper-space edges. In other words, they

wrap-around so that atomic elements are not reflected at the Universe's virtual boarders. Initial plans for

the topology included requiring rigid geometric sizes (like perfect squares and/or perfect cubes) but have

"Agent Based Computing Machine" by Lexxle, Inc. 39

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 40

since been dismissed. Instead, more focus is dedicated to distributing data and establishing the initial
state of the machine.

The initial region structure is defined at the start and remains fixed. In the Holistic approach Regional
changes are not allowed. Because of the asynchronous nature of regional construction and destruction, it
would be necessary to centrally define the data structure to represent the regional space. Updating the
data structure would require momentarily suspending all operations throughout the cluster to preserve
regional integrity of the system. Simultaneous regional operations across the cluster would result in
massive network overhead and frequent suspension of the system preventing real work from being
accomplished. The problem would get worse as the size of the cluster increased: if the nature of the
problem necessitated a large number regional changes the cluster would drown in regional maintenance
overhead.

Figure 15

Cluster Mapping

Pýt11al Holistic Clusieý Im plerm.entation, Topralogies

'PotentiXal Redundant Partition Cluster To . ies

R-7 .f 'i -i :, .i e. .I S!t I-FýtF

Redundant Partitions. Redundant partitioning involves a more traditional MPI approach to implementing
the ABC machine. Instead of treating the cluster as a single space, problems are initialized and then
distributed as copies to individual nodes or to groups of nodes. Over n nodes, the user has the
prerogative to duplicate the problem n times or to partition the problem into subsets.

Once the nodes begin their work, individual atoms remain in their space and are not passed to other
nodes. The initial region structure is defined at the start but can be changed by local execution of Rules.
Because of the constricted nature of the partitions, operations requiring regional changes can be allowed
for algorithms that require them resulting in lower network and CPU cost. More research needs to be
done to determine if allowing regional changes on small, limited-sized cluster groups would be a
reasonable compromise to the Holistic approach. By keeping the sub-groups/limited-sized clusters small,
the increased regional maintenance overhead is allowed to permit operating on larger partitioned problem
sets.

"Agent Based Computing Machine" by Lexxle, Inc. 40

Lexxle, Inc. SBIR Phase I! Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 41

Data Representation. In the ABC machine, data is represented by strings of atoms. An atom string can
be one atom long or many atoms long. This cluster implementation uses null-terminated strings of
unlimited size to represent both individual and chains of atomic elements. The regional location of the
atom string is stored in the first five characters of the string. For example, an atom located in Region One
with an atomic string consisting of "aaabbbcd" is represented as "00001aaabbcd".

There is a core set of instructions that deal with atom strings on a basic level. Core instructions include
creating and destroying atoms, concatenating and digesting atoms, rotating elemental strings in the atom
one character left or right, and removing the left-most or right-most elemental character from the string.
Additional core instructions provide for determining the magnitude of atomic strings and for comparing
different strings. Other instruction can determine regional location of an atom string and which region
encompasses an atom's current region. More core instructions can be added. There is also a Core set of
instruction for promoting/demoting atoms to other regions. The idea behind having the Core set of
instructions is that programming the ABC machine is easier with such a foundation and makes building
more complicated 'enzymes' or Rules easier. We parallel this idea with basic instruction sets for a CPU
upon which complication Operating Systems and GUI are built.

A Universe is represented as a global array of pointers to arrays of Atoms. Using a global datastructure
allows access to the regional construct of the Universe without needing accessor functions. That is
important as Rules become more complicated and nested because a series of Rules can create a set of
new atoms that do not then all exist in the same region. Also, we have included the idea of Density in
both Atomic and Rule content: more densely-occurring elements should have more frequent reactions.

The Shuffler. The "shuffler" is the algorithm used to simulate motion in an ABC machine. By motion, it is
meant that the operands move around until they come into contact with instructions in dataflow like
fashion. Unless a biological implementation is used, such motion is only a concept and must be
"simulated". The central operation of the Shuffler in the Universe works like this:

"* A region is selected at random depending on the atomic density of each region. It makes sense to
weigh reactions to denser atomic content because the more atoms there are in a location the more
often there would be an interaction between them.

"* A Rule is then selected from a table of Rules that exist within that region based on the density of
Rules for that region. Obviously, if there are 100x more 'comparison' Rules then there are 'rotation'
Rules in a given region the system should reflect that in selecting how the atoms interact. Currently,
Rules are defined with a single interface type that takes a pointer to all of the atoms in a particular
region and the Rule should return a temporary structure that contains all of the newly created and/or
changed atoms. By implementing this common interface, new Rules can then be built from
combinations of existing Rules and dealt with in a consistent way.

"* The Rule dictates how many atoms should be randomly drawn from the local region. The selected
Atoms are then processed by the Rule.

"* After the Rule is finished, it returns a list of all of the Atoms created during processing to the Shuffler.
The Shuffler then has the responsibility to place the Atoms into their correct Region.

"* The process repeats. Note that a Rule is allowed to request data from the system and to request that
the Machine should terminate.

Atomic Character Representation. Because characters are limited to an 8-bit representation, the
current prototype of the ABC machine has a symbol alphabet limit of 250. With 256 possible 8-bit
combinations, the 250 character limit reserves a terminating, or null character, and four special characters
for system use. UNICODE would be a preferred minimal atomic representation because of the raised limit
of 65,536 unique symbols. Ultimately, an object-oriented approach (in C++ perhaps) would yield an
encapsulated Atom object with no meaningful limit on unique symbol labels.

Input/Output and Programming. MPI is a common, robust framework used to develop software
solutions on most current Beowulf cluster implementations. Therefore it is convenient that the "ABC
Machine" utilize these libraries for communication. In both approaches, the "ABC Machine" is written and
launched as an MPI program. and in both approaches the MPI libraries abstract the bulk of transmitting

"Agent Based Computing Machine" by Lexxle, Inc. 41

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 42

the initial data needed for computation, and (in the holistic approach) passing atoms between nodes in
the system. MPI is also key in system management of the overall system, such as stopping/pausing
operation, initializing data, and collecting results.

Even though prototyping the machine is set up using hard-coded problems, Phase II design involves
configuring and launching the system by a specifically-defined XML file. The file would contain directives
such as implementation approach, initial atomic content, density of atoms, Rule definition and densities,
regional structure, status queries, termination time, additional files, etc. Defining the problem set in XML
lends the power and portability of the XML standard and a rich set of software designed to parse,
produce, and manipulate XML. (eg. Text Editors, Web/Grid-Services, GUI Front-ends, Apache Xerces
parser, etc). Future development could feature a parsed scripting language to define and distribute the
problem. Every stage of development has been driven by the goal of open-ended scalability and
transparency to the problem designer. Output can be delivered in a variety of formats. These include
plain text logging, XMUXHTML, and potentially Relational Databases (MySQL, Postgresql) for collection
of cluster samples/snapshots over intervals of time.

An prototypical example of an XML file to configure and launch the ABC Machine:
<abcSystem targetnamespace=>"http:l/lexxle.com/abcMachine">
<A-_

mode values are holisticjpartitioned

<init mode="holistic'>
<L--
specifies how long to allow system run before terminating it

Time Modes:
seconds: Length of timer interval in Seconds. 60 is one minute
iterations: Number of times the timer will restart or negative for continuous.

<timer seconds="60" iterations="-1 1"/>
<I--

Initial Region Setup

<region id="0">
<I-- initial atoms in this region ->
<!-- set-up wildcard character -->
<wiidcard value = "a..z"/> <I-- All characters a to z inclusive -- >

<atom count="1 000">abbacd</atom>
<atom count="1 000">gefjig</atom>

<I-- randomly generate atoms with 4 wildcard
chars, then 4 b's then 5 wildcard chars -->

<atom count="5000">.4?.bbbb.5?.</atom>
<1-- enzyme name will be bound to a Rule (possibly scripted) -->
<enzyme name="PathDiscovery"/>
<!-- an Inner Region initially with no atomic elements -->
<region id="'">

<enzyme name="PathRefinement/>
</region>

</region>
<linit>
</abcSystem>

"Agent Based Computing Machine" by Lexxle, Inc. 42

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 43

Future Implementation Concepts. Best efforts will be used in Phase 2 to accomplish the following
enhancements. Due to the speed and support of MPI for C/C++ on Beowulf clusters, these languages
could be ideal choices for further development the "ABC Machine." Future implementations however, may
span beyond just that of a cluster as other cutting edge technologies such as JXTA are evolving and may
offer an efficient way to run an ABC Machine in a more peer-to-peer environment similar to that of the
infamous "SETI at Home" project.

By using the XML standard, the ABC machine could be included as a workflow in a Grid Computing
platform or could be used as a logical first or next step in a series of intelligently-designed workflows.

The following concepts are further open issues that will continue to be explored and implemented on a
best efforts basis in Phase 2.

"* Machine Permeability and how the engine deals with 'slow' nodes. We currently treat the cluster
as a system of similarly-built computers.

"* Initial Network Cluster evaluation per node and how it relates to distribution of data
"* Concurrency scheduling and/or pipelining for increased per node performance
"* Complexity Calculations
"* Specifically evaluating the state of the machine ie solutions.

1.11 Phase I Results

In Phase 1, our effort not only defined the ABC architecture in detail, but also developed the mapping
strategy to a cluster machine. Some preliminary results have been obtained by comparing the use of the
ABC Machine to a neural network for character recognition.

The ABC Machine VS Artificial Neural Network

Character Recognition trials were done comparing classification ability of the ABC Machine versus a
biased, hidden-layer, feed-forward network consisting of 25 inputs, 50 hidden-layer nodes, and 12
outputs. The 25 inputs each corresponded to a 'grid square' of the input character being classified and
the twelve outputs were a set of switches with a value of '1.0' in the corresponding output and '0' in all of
the other outputs. Training was done over 250 epochs of each set of 12 input/output pairs with a
randomized initial set of initial weights and sigmoidal outputs. Classes consisted of 12 characters 1, 2, 3,
4, 5, 6, A, B, C, D, E, & F. After training and with no mutation, the ANN could accurately classify input
100% correctly with no errors.

The ABC machine was programmed to classify inputs based on Hamming distance only where the
Hamming distance is defined as the total number of non-matching bits between the subject and the class.

"Agent Based Computing Machine" by Lexxle, Inc. 43

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 44

To test inputs, mutations were performed by randomly alternating a percentage of the representation bits,
or "flipping them," where '1' would be changed to a '0' and a '0' would be changed to a '1.' Four different
mutation percentage settings were used: 0%, 5%, 10%,15%, 20%, 25%, 30%, 50%, 100% to simulate
noisy input signals. Percent mutated was the probability that a given grid sector got flipped in error during
detection.

Classification Success ABC vs ANN

0.0

0.8

0.7

0.0

.
-- ABC '%Mised

-ANN %Missed

0.4-... Both M, ssed

0.3

0.2

0.1

1 2 3 4 5 6 7 8

Trial # and Mutation Rate

Figure 16
ABC vs. ANN

Each classifier was presented with the same input signal and their computed outputs were compared.
After each trial set, the ANN was retrained on a re-randomized set of weights to minimize the likelihood
that the ANN got trapped in a 'local min' that reduced its ability to classify a particular input well.

After a series of trials it was discovered that the simplified ABC string matching rule set performed as well
as the ANN over 'perfect' input data, as was expected, but also significantly better - up to 50% better in
some cases - than the ANN over progressively mutated inputs.

To judge the quality of classification, not only were each classifier's misses accumulated but also a record
was kept when they both miss-classified so that there was an indication of how mutated a subject's
representation data had become. Obviously, using random mutation leaves open the possibility that the
input data will be so obscured as to not be able to be classified by any means.

The most promising aspect of these initial results are that the classification used by the ABC machine is
an extremely simple comparison method.

The ABC Machine vs. Classical Single CPU Symbolic Computing

A symbolic computing program on a single CPU machine may take a long time to search and may be
brittle at the boundaries if rules do not exist to continue the search strategy. A symbolic computing
problem implemented on an ABC Machine architecture degrades gracefully because of the many copies
of the operands and instructions and the multiple redundant paths being pursued. Further, it can search
deep search spaces due to the inherent massive parallelism. The shortest path algorithm explored and
the methods to augment it for best first search illustrated a way to implement symbolic computing
problems on an ABC Machine architecture.

"Agent Based Computing Machine" by Lexxle, Inc. 44

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 45

It is already known that "best first or heuristic search can greatly reduce a search space. Consider, for
example, a very large search space such as the game of chess. It may have some 10"20 possible
search nodes if brute force is used. If a heuristic can reduce the decisions at each step by 90% or more,
then there may be a 10**3 to 10**5 improvement in search, reducing the total search nodes to say
10**16, still a very large number. Now consider an ABC Machine architecture on an 1100 dual CPU
cluster such as System X at Virginia Tech. One could do say 10**4 "rats in a maze" approach and reduce
the search space to say 10**12 single time steps which is getting much closer to a computable number.
But this achievement is made only due to rundancy and sheer parallelism. Such solutions will be much
more dramatic in the future when either biological implementations of ABC allow, say 10**6 nodes, or
else clusters get bigger and faster, which they inevitably will.

But the above argument leaves out one significant advance of the ABC machine architecture. That is the
ability to encapsulate rules in membranes and thus restrict the amount of processing done locally. This
has the net effect of further improving the heuristics if it is "programmed" with a genetic algorithm as
proposed above. Hence, another order of magnitude advance is possible with the HPC implementation.
The hypothetical chess problem discussed above could be reduced to say 10**9 steps, now a very
doable number on an HPC. Hence, we argue that there is not only a parallel processing advance, but a
heuristic power advance due to the combination of genetic programming and local rule sets in the ABC
architecture. The Phase 2 program will prototype this completely and seek to prove this significant result.

What makes the ABC Machine a strong and viable architecture?

The ABC Machine can be implemented today on cluster machines, rendering a high compute power
alternative to traditional cognitive computing or Al.

It has been shown to be capable of large scale pattern recognition problems - that is, problems with a
large number of classes, no need for training, and ability to recognize in the presence of noisy data.

The ABC Machine is capable of easily trading off compute time for more space, enabling NP complete
problems to be solved on polynomial time.

It an be used for large scale heuristic search problems with good results and graceful degradation. It can
also be used for complex systems simulation.

It is very important to understand that the power of the ABC machine is in its extensibility. The framework
of the Universe and the method by which to create and connect regions has already been established.
The only thing the user has to do is design the regional construction, create a profile of the initial atomic
content of each region or the universe as a whole, and then define a rule set.

The rule set is the foundation of how the ABC Machine solves problems and the code is fully Object-
Oriented. To program the machine, the programmer currently only has to implement a single Interface,
define those three qualities, and then let it go. Because the complexity is abstracted from the
user/programmer, ABC Machine programs are easy to create, install, maintain, and extend. While there
are plans to create advanced high-level tools incorporating GUI and scripting options, the ability to
actually 'get into the machine' will always be a possibility for the power user.

"Agent Based Computing Machine" by Lexxle, Inc. 45

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 46

4. Related Work.

4.2 Prior Research

This SBIR project is based on an extension to the doctoral dissertation of the PI, Dr. Edwin R. Addison.
As indicated in his bio, Dr. Addison is an accomplished entrepreneur with 2 previous SBIR funded
companies with successful exits, 20 years of part time teaching experience in Computer Science
(including artificial intelligence) and 25 years of professional experience. He completed is doctoral work
in the area of biologically inspired computer architectures recently (2003). His doctoral dissertation
representing several years of work was: "The Whole Cell Computer: A New Computer Architecture Based
on a Cell Biology Metaphor", Edwin R. Addison, 2003. In this work, he defined a derivative of membrane
computers to perform symbolic computation. An extension of the concepts developed there are modified
and proposed for this SBIR topic.

4.3 Relevant Experience of the Lexxle Staff

The following are the most significant qualifications of Lexxle, Inc. for this work:

"* Ed Addison - founder and CEO with two former successful search ventures. Dr. Addison has
both technical and business/management skills. His bio is below. He has managed several
early stage ventures, numerous Government contracts and several commercial software
products in the search area. He is also an adjunct professor with Johns Hopkins University.

"* Ms. Terri Hobbs is a engineer on the project and lead developer. She has extensive
experience with natural language processing and with search engine software (see bio
below).

"* Lawrence Husick, founding CTO of Infonautics (an information systems venture that went
public in 1996), is also acting as advisor to Lexxle, inc. He will advise on commercial product
specifications.

"* Lexxle, Inc. has employed well qualified software engineers, including Dr. Kathleen Romanik
and Ms. Chris Eck are both experienced in writing code for search applications (bios below).
Lexxle, Inc. has a relationship with University of North Carolina where graduate students are
available for part time employment. The company also has several additional software
engineers and several in the hiring pipeline who may be applicable.

"* Lexxle team specific project experience. The company has experience across a range of
projects that establish qualifications for this work. Some of the more significant experiences
are cited below:

o Powerize.com - Dr. Edwin R. Addison and Kathleen Romanik and Ms. Terri Hobbs of
Lexxle, Inc. all were former founding members of Powerize.com, an Internet business
information search engine that was merged with Hoovers/Dunn & Bradstreeet in 2000.
While at Powerize.com, technical work using the IBM (formerly Booz, Allen and formerly
ADS) Minerva platform formed the basis of the Powerize.com search engine. In addition,
extensive "hidden web" databases were searched using a federated search strategy and
presented on the web site. Powerize.com represents a state-of-the-art search
experience for the Lexxle team. Powerize.com was partly funded by Air Force SBIR
contracts.

"Agent Based Computing Machine" by Lexxle, Inc. 46

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 47

" BioSequent, LLC. The same team also worked for start up BioSequent in 2002, a
biotech search engine company that is no longer funded. While at BioSequent, technical
work involved natural language extraction (identifying protein names within research
journal articles) as well as BLAST search, and integrating search results from multiple
databases using an evidential reasoning algorithm. BioSequent did not obtain continued
funding, but the remaining work has become part of Lexxle.

"o ConQuest and DARPA. Dr. Addison and Ms. Hobbs of Lexxle, Inc. led a DARPA Phase
2 SBIR to integrate Word-Net into the ConQuest search engine in 1994-5. ConQuest is a
search engine based on a semantic network that is now Convera's RetrievalWare.

"o ConQuest and UMLS. Dr. Addison and Ms. Hobbs led an NIH Phase 2 SBIR to integrate
the UMLS language system form NIH into the ConQuest search engine in 1993.

"o Extensive additional customer experience through ConQuest including the Air Force,
DOD, Intelligence Community, publishers of information, online services and Fortune 500
companies.

"o Natural Language Processing - Dr. Addison taught Natural Language Processing for
Johns Hopkins University form 1986 until 1995. He continues to teach courses in
Computer Science at Johns Hopkins University on a part time basis.

0 Multiple Commercial Venture Experiences. The team behind Lexxle has successfully started,
developed and merged several previous start up companies over the last 15-20 years. This
experience and track record represents a greater probability of success and a reduced risk
for Lexxle, Inc.

"Agent Based Computing Machine" by Lexxle, Inc. 47

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 48

4.4 REFERENCES

Addison "The Whole Cell Computer: A New Computer Architecture Based on a Cell Biology Metaphor",
doctoral dissertation of Edwin R. Addison, 2003

Anderson, J. "The Architecture of Cognition", Cambridge, MA: Harvard University Press, 1983.

Bar-Yam, Y. (1993) Dynamics of Complex Systems. Reading, MA: Perseus Books.

BICA, "Biologically Inspired Computer Architectures", DARPA Research Program, 2005

Bower and Bolouri, Computational Modeling of Genetic and Biochemical Networks, 2001, McGraw Hill

Calude, C., and Paun, G. (2001). Computing with Cells and Atoms: An Introduction to Quantum, DNA

and Membrane Computing, Chapter 3. London: Taylor & Frances.

Charniak, E. (1986). Principles of Artificial Intelligence, Chapters 2-3. Addison-Wesley, Boston, MA

Copeland, B. and Sylvan, R. (1999) Beyond the Universal Turing Machine. Australian Journal of
Philosophy, 77, 46-66.

Cray, S. (1996, May 30) An Imaginary Tour of a Biological Computer: Why Computer Professionals and
Molecular Biologists Should Start Cooperating. Remarks of Seymour Cray to the Shannon Center of
Advanced Studies, University of Virginia. http://americanhistorV.si.edu/csr/comphistlmontic/cray.htm
(10/24/2002)

Forbes, N. (2000, November). Biologically Inspired Computing, Computing in Science and Engineering.
In: http://www.computer.org/cise/articles/inspired.htm

Havran, et. al., "Introduction to Independent Component Analysis," C. Havran, L. Hupet, J. Czyz, J. Lee,

L.

Horn, B. (1986). Robot vision. Cambridge, MA: MIT press, pp. 46-89.

Jesorsky, et. al. "Robust Face Detection Using Hausdorff Distance," Oliver Jesorsky, Klaus J.Kirchberg
BiolD AG, Berlin, Germany 2001

Kahol, "Face Recognition Using Mahalanobis Distance," Kanav Kahol. CSE 591 class presentation,
Arizona.State University.

Kintsch, W., Comprehension: A Paradigm for Cognition. Cambridge, UK. Cambridge University Press,
1998

Koza, J. R.. (1994). Evolution of emergent cooperative behavior using genetic programming. In Paton,
R. (Ed.), Computing With Biological Metaphors (pp. 280-297). London: Chapman & Hall.

Kung (1991), Introduction to Systolic Arrays, Addison-Wesley, 1991, Boston.

Leeuw, K., et. al. (1956). Computability by probabilistic machines. Pages 183-212 in C.E. Shannon and
J. McCarthy, ed. Automatica Studies, Princeton university press, Princeton, NJ.

Minsky, M. (1988). Society of Mind. Boston: Simon and Schuster.

"Agent Based Computing Machine" by Lexxle, Inc. 48

Lexxle, Inc. SBIR Phase II Proposal, Topic # AF05-109, Proposal # F2-2873. Pg. 49

Ord, T. (2002) Hypercomputation: computing more than the Turing machine. Melbourne, Australia:
university of Melbourne, Dept. of Computer Science, thesis, In:
http://arxiv.org/abs/math.LO/0209332

Paton, R. (Ed.). (1994). Computing With Biological Metaphors. London: Chapman & Hall.

Paun, G. (2002) (http:I/psystems.disco.unimib.it), as viewed in October 2002.

SETI @ Home. (2002). The Search for Extra Terrestrial Intelligence. In:
http://setiathome.ssi.berkeleV.edu/. Berkeley: SET @ Home.

Shackleton, M. A. and Winter, C. S. (1998). A computational architecture based on cellular processing.
In Holcombe, M. and Paton, R., [Eds.] Information Processing in Cells and Tissues, pages 261--272,
New York: Plenum Press.

Silc, J., Robic, B., and Ungerer, T. Asynchrony in parallel computing: from dataflow to multithreading.

Parallel and Distributed Computing Practices, Vol. 1, No. 1, March 1998.

Smith, L. (2002) Tutorial On Principal Component Analysis,". University of Otago, New Zealand.

Turk and Pentland (1991), "Eigenfacesfor recognition.,". Journal of Cognitive Neuroscience, 3(1):71--86.

Turing, A. (1939). Systems of Logic based Ordinals, Proceedings of the London mathematical society,
45:161-228.

Vandendorpe, M. Verleysen Universit6 catholique de Louvain, Electricity Dept.

Xiaozhou, et. al., "Hausdorff Distance for Shape Matching," Yu Xiaozhou, Maylor Leung 2004

"Agent Based Computing Machine" by Lexxle, Inc. 49

